Without geospatial data management, today’s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis.
The integration of 3D city models with Building Information Models (BIM), coined as GeoBIM, facilitates improved data support to several applications, e.g., 3D map updates, building permits issuing, detailed city analysis, infrastructure design, context-based building design, to name a few. To solve the integration, several issues need to be tackled and solved, i.e., harmonization of features, interoperability, format conversions, integration of procedures. The GeoBIM benchmark 2019, funded by ISPRS and EuroSDR, evaluated the state of implementation of tools addressing some of those issues. In particular, in the part of the benchmark described in this paper, the application of georeferencing to Industry Foundation Classes (IFC) models and making consistent conversions between 3D city models and BIM are investigated, considering the OGC CityGML and buildingSMART IFC as reference standards. In the benchmark, sample datasets in the two reference standards were provided. External volunteers were asked to describe and test georeferencing procedures for IFC models and conversion tools between CityGML and IFC. From the analysis of the delivered answers and processed datasets, it was possible to notice that while there are tools and procedures available to support georeferencing and data conversion, comprehensive definition of the requirements, clear rules to perform such two tasks, as well as solid technological solutions implementing them, are still lacking in functionalities. Those specific issues can be a sensible starting point for planning the next GeoBIM integration agendas.
<p><strong>Abstract.</strong> Over the recent years, the usage of semantic web technologies and Resources Description Framework (RDF) data models have been notably increased in many fields. Multiple systems are using RDF data to describe information resources and semantic associations. RDF data plays a very important role in advanced information retrieval, and graphs are efficient ways to visualize and represent real world data by providing solutions to many real-time scenarios that can be simulated and implemented using graph databases, and efficiently query graphs with multiple attributes representing different domains of knowledge. Given that graph databases are schema less with efficient storage for semi-structured data, they can provide fast and deep traversals instead of slow RDBMS SQL based joins allowing Atomicity, Consistency, Isolation and durability (ACID) transactions with rollback support, and by utilizing mathematics of graph they can enormous potential for fast data extraction and storage of information in the form of nodes and relationships. In this paper, we are presenting an architectural design with complete implementation of BIM-GIS integrated RDF graph database. The proposed integration approach is composed of four main phases: ontological BIM and GIS model’s construction, mapping and semantic integration using interoperable data formats, then an import into a graph database with querying and filtering capabilities. The workflows and transformations of IFC and CityGML schemas into object graph databases model are developed and applied to an intelligent urban mobility web application on a game engine platform validate the integration methodology.</p>
The primary goal of low impact development (LID) is to capture urban stormwater runoff; however, multiple indirect benefits (environmental and socioeconomic benefits) also exist (e.g., improvements to human health and decreased air pollution). Identifying sites with the highest demand or need for LID ensures the maximization of all benefits. This is a spatial decision-making problem that has not been widely addressed in the literature and was the focus of this research. Previous research has focused on finding feasible sites for installing LID, whilst only considering insufficient criteria which represent the benefits of LID (either neglecting the hydrological and hydraulic benefits or indirect benefits). This research considered the hydrological and hydraulic, environmental, and socioeconomic benefits of LID to identify sites with the highest demand for LID. Specifically, a geospatial framework was proposed that uses publicly available data, hydrological-hydraulic principles, and a simple additive weighting (SAW) method within a hierarchical decision-making model. Three indices were developed to determine the LID demand: (1) hydrological-hydraulic index (HHI), (2) socioeconomic index (SEI), and (3) environmental index (ENI). The HHI was developed based on a heuristic model using hydrological-hydraulic principles and validated against the results of a physical model, the Hydrologic Engineering Center-Hydrologic Modeling System model (HEC-HMS). The other two indices were generated using the SAW hierarchical model and then incorporated into the HHI index to generate the LID demand index (LIDDI). The framework was applied to the City of Toronto, yielding results that are validated against historical flooding records.
Abstract. Today maritime transportation represents 90% of international trade volume and there are more than 50,000 vessels sailing the ocean every day. Therefore, reducing maritime transportation security risks by systematically modelling and surveillance should be of high priority in the maritime domain. By statistics, majority of maritime accidents are caused by human error due to fatigue or misjudgment. Auto-vessels equipped with autonomous and semi-autonomous systems can reduce the reliance on human’s intervention, thus make maritime navigation safer. This paper presents a clustering method for route planning and trajectory anomalies detection, which are the essential part of auto-vessel system design and development. In this paper, we present the development of an enhanced density-based spatial clustering (DBSCAN) method that can be applied on historical or real-time Automatic Identification System (AIS) data, so that vessel routes can be modelled, and the trajectories’ anomalies can be detected. The proposed methodology is based on developing an optimized trajectory clustering approach in two stages. Firstly, to increase the attribute dimension of the vessel’s positioning data, therefore other characteristics such as velocity and direction are considered in the clustering process along with geospatial information. Secondly, the DBSCAN clustering model has been enhanced by introducing the Mahalanobis Distance metric considering the correlations of the position cluster points aiming to make the identification process more accurate as well as reducing the computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.