The pace-of-life syndrome hypothesis predicts that individual differences in behaviour should integrate with morphological, physiological, and life-history traits along a slow to fast pace-of-life continuum. For example, individuals with a "slow" pace-of-life are expected to exhibit a slower growth rate, delayed reproduction, longer lifespans, have stronger immune responses, and are expected to avoid risky situations relative to "fast" individuals.If supported this hypothesis would help resolve ecological and evolutionary questions regarding the origin and maintenance of phenotypic variation. Support for the pace-of-life syndrome hypothesis has, however, been mixed. Here we conducted a meta-analysis of 42 articles and 179 estimates testing the pace-of-life syndrome hypothesis as it applies to the integration of behaviours with physiological or life-history traits. We found little overall support for the pace-of-life syndrome hypothesis with the mean support estimated as r = 0.06. Support for the pace-of-life syndrome hypothesis was significantly higher in invertebrates (r = 0.23) than vertebrates (r = 0.02) and significantly higher when based onThe lack of overall support found in our analyses suggests that general assertions 24 regarding phenotypic integration due to "pace-of-life" and should be re-evaluated. 25 4 Significance StatementThe pace-of-life syndrome hypothesis has been proposed as an overall organizational framework for the integration of behavioural, life-history, and physiological traits. This hypothesis provides potentially profound insights into how and why phenotypic traits might covary and why phenotypic variation may be maintained within populations. Over the last seven years this organizational framework has been intensively investigated as it pertains to relationships between behaviour and other traits. Here we conducted an overall analysis of whether the hypothesis was supported. Despite considerable research investment across behavioural ecology, we did not find that available data supported the pace-of-life syndrome hypothesis. This suggests that either the hypothesis has been inappropriately tested or is not generally applicable.
The contribution of genetic variation to phenotypes is a central factor in whether and how populations respond to selection. The most common approach to estimating these influences is via the calculation of heritabilities, which summarize the contribution of genetic variation to phenotypic variation. Heritabilities also indicate the relative effect of genetic variation on phenotypes versus that of environmental sources of variation. For labile traits like behavioral responses, life history traits, and physiological responses, estimation of heritabilities is important as these traits are strongly influenced by the environment. Thus, knowing whether or not genetic variation is present within populations is necessary to understand whether or not these populations can evolve in response to selection. Here we report the results of a meta-analysis summarizing what we currently know about the heritability of behavior. Using phylogenetically controlled methods we assessed the average heritability of behavior (0.235)—which is similar to that reported in previous analyses of physiological and life history traits—and examined differences among taxa, behavioral classifications, and other biologically relevant factors. We found that there was considerable variation among behaviors as to how heritable they were, with migratory behaviors being the most heritable. Interestingly, we found no effect of phylogeny on estimates of heritability. These results suggest, first, that behavior may not be particularly unique in the degree to which it is influenced by factors other than genetics and, second, that those factors influencing whether a behavioral trait will have low or high heritability require further consideration.
Theoretical research has outlined how selection may shape both genetic variation and the expression of phenotypic plasticity in multivariate trait space. Specifically, research regarding the evolution of patterns of additive genetic variances and covariances (summarized in matrix form as G) and complementary research into how selection may shape adaptive plasticity lead to the general prediction that G, plasticity, and selection surfaces are all expected to align with each other. However, less well discussed is how this prediction might be assessed and how the modeled theoretical processes are expected to manifest in actual populations. Here, we discuss the theoretical foundations of the overarching prediction of alignment, what alignment mathematically means, how researchers might test for alignment and important caveats to this testing. The most important caveat concerns the fact that, for plasticity, the prediction of alignment only applies to cases where plasticity is adaptive, whereas organisms express considerable plasticity that may be neutral or even maladaptive. We detail the ramifications of these alternative expressions of plasticity vis-à-vis predictions of alignment. Finally, we briefly highlight some important interpretations of deviations from the prediction of alignment and what alignment might mean for populations experiencing environmental and selective changes.
Recent work on animal personalities has shown that individuals within populations often differ consistently in various types of behaviour and that many of these behaviours correlate among individuals to form behavioural syndromes. Individuals of certain species have also been shown to differ in their rate of behavioural innovation in arriving at novel solutions to new and existing problems (e.g., mazes, novel foods). Here, we investigate whether behaviours traditionally studied in personality research are correlated with individual rates of innovation as part of a wider behavioural syndrome. Guppies (Poecilia reticulata) of both sexes from three different wild population sources were assessed: (a) exploration of an open area; (b) speed through a three‐dimensional maze; (c) investigation of a novel object; and (d) attraction to a novel food. The covariance structure (syndrome structure) was examined using structural equation modelling. The best model separated behaviours relating to activity in all contexts from rates of exploration/investigation and innovation. Innovative behaviour (utilizing new food and moving through a novel area) in these fish therefore forms part of the same syndrome as the traditional shy‐bold continuum (exploration of an open area and investigation of a novel object) found in many animal personality studies. There were no clear differences in innovation or syndrome structure between the sexes, or between the three different populations. However, body size was implicated as part of the behavioural syndrome structure, and because body size is highly correlated with age in guppies, this suggests that individual behavioural differences in personality/innovation in guppies may largely be driven by developmental state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.