Background/Aims: Saturated fatty acids (SFA) are widely thought to induce inflammation in adipose tissue (AT), while monounsaturated fatty acids (MUFA) are purported to have the opposite effect; however, it is unclear if individual SFA and MUFA behave similarly. Our goal was to examine adipocyte transcriptional networks regulated by individual SFA (palmitic acid, PA; stearic acid, SA) and MUFA (palmitoleic acid, PMA; oleic acid, OA). Methods: Differentiated preadipocytes were treated with either 250 µ
BackgroundSuccessful weight maintenance following weight loss is challenging for many people. Identifying predictors of longer-term success will help target clinical resources more effectively. To date, focus has been predominantly on the identification of predictors of weight loss. The goal of the current study was to determine if changes in anthropometric and clinical parameters during acute weight loss are associated with subsequent weight regain.MethodologyThe study consisted of an 8-week low calorie diet (LCD) followed by a 6-month weight maintenance phase. Anthropometric and clinical parameters were analyzed before and after the LCD in the 285 participants (112 men, 173 women) who regained weight during the weight maintenance phase. Mixed model ANOVA, Spearman correlation, and linear regression were used to study the relationships between clinical measurements and weight regain.Principal FindingsGender differences were observed for body weight and several clinical parameters at both baseline and during the LCD-induced weight loss phase. LCD-induced changes in BMI (Spearman’s ρ = 0.22, p = 0.0002) were inversely associated with weight regain in both men and women. LCD-induced changes in fasting insulin (ρ = 0.18, p = 0.0043) and HOMA-IR (ρ = 0.19, p = 0.0023) were also associated independently with weight regain in both genders. The aforementioned associations remained statistically significant in regression models taking account of variables known to independently influence body weight.Conclusions/SignificanceLCD-induced changes in BMI, fasting insulin, and HOMA-IR are inversely associated with weight regain in the 6-month period following weight loss.
BackgroundA family of parsimonious Gaussian mixture models for the biclustering of gene expression data is introduced. Biclustering is accommodated by adopting a mixture of factor analyzers model with a binary, row-stochastic factor loadings matrix. This particular form of factor loadings matrix results in a block-diagonal covariance matrix, which is a useful property in gene expression analyses, specifically in biomarker discovery scenarios where blood can potentially act as a surrogate tissue for other less accessible tissues. Prior knowledge of the factor loadings matrix is useful in this application and is reflected in the one-way supervised nature of the algorithm. Additionally, the factor loadings matrix can be assumed to be constant across all components because of the relationship desired between the various types of tissue samples. Parameter estimates are obtained through a variant of the expectation-maximization algorithm and the best-fitting model is selected using the Bayesian information criterion. The family of models is demonstrated using simulated data and two real microarray data sets. The first real data set is from a rat study that investigated the influence of diabetes on gene expression in different tissues. The second real data set is from a human transcriptomics study that focused on blood and immune tissues. The microarray data sets illustrate the biclustering family’s performance in biomarker discovery involving peripheral blood as surrogate biopsy material.ResultsThe simulation studies indicate that the algorithm identifies the correct biclusters, most optimally when the number of observation clusters is known. Moreover, the biclustering algorithm identified biclusters comprised of biologically meaningful data related to insulin resistance and immune function in the rat and human real data sets, respectively.ConclusionsInitial results using real data show that this biclustering technique provides a novel approach for biomarker discovery by enabling blood to be used as a surrogate for hard-to-obtain tissues.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1564-5) contains supplementary material, which is available to authorized users.
Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown. Here, we provide the first demonstration of an indispensable role of the androgen receptor (AR) in sonic hedgehog (SHH) responsive Gli1-expressing cells, in regulating prostate development, growth, and regeneration. Selective deletion of AR expression in Gli1-expressing cells during embryogenesis disrupts prostatic budding and impairs prostate development and formation. Tissue recombination assays showed that urogenital mesenchyme (UGM) containing AR-deficient mesenchymal Gli1-expressing cells combined with wildtype urogenital epithelium (UGE) failed to develop normal prostate tissue in the presence of androgens, revealing the decisive role of AR in mesenchymal SHH responsive cells in prostate development. Prepubescent deletion of AR expression in Gli1expressing cells resulted in severe impairment of androgen-induced prostate growth and regeneration. RNA-sequencing analysis showed significant alterations in signaling pathways related to prostate development, stem cells, and organ morphogenesis in AR-deficient Gli1-expressing cells. Among these altered pathways, the transforming growth factor β1 (TGFβ1) pathway was up-regulated in AR-deficient Gli1-expressing cells. We further demonstrated the activation of TGFβ1 signaling in AR-deleted prostatic Gli1-expressing cells, which inhibits prostate epithelium growth through paracrine regulation. These data demonstrate a novel role of the AR in the Gli1-expressing cellular niche for regulating prostatic cell fate, morphogenesis, and renewal, and elucidate the mechanism by which mesenchymal
BACKGROUND: North American (NA) ginseng (Panax quinquefolius) is a popular natural health product (NHP) that has been demonstrated to regulate immune function, inflammatory processes and response to stress and fatigue. Recent evidence suggests that various extracts of NA ginseng may have different bioactivities because of distinct profiles of ginsenosides and polysaccharides. To date, the bioactive role of ginseng on adipocytes remains relatively unexplored. OBJECTIVE: The goal of this work was to study the extract-specific bioactivity of NA ginseng on differentiated preadipocyte gene expression and adipocytokine secretion. METHODS: In vitro differentiated 3T3-L1 preadipocytes were treated with 25 and 50 mg ml À 1 of either crude ethanol (EtOH) or aqueous (AQ) NA ginseng extracts, or polysaccharide and ginsenoside extracts isolated from the AQ extract. Global gene expression was studied with microarrays and the resulting data were analyzed with functional pathway analysis. Adipocytokine secretion was also measured in media. RESULTS: Pathway analysis indicated that the AQ extract, and in particular the polysaccharide extract, triggered a global inflammomodulatory response in differentiated preadipocytes. Specifically, the expression of Il-6 (interleukin 6), Ccl5 (chemokine (C-C motif) ligand 5), Nfkb (nuclear factor-kappaB) and Tnfa (tumor necrosis factor alpha) was increased. These effects were also reflected at the protein level through the increased secretion of IL-6 and CCL5. No effect was seen with the EtOH extract or ginsenoside extract. Using a specific toll-like receptor 4 (TLR4) inhibitor reduced the upregulation of inflammatory gene expression, indicating the relevance of this pathway for the signaling capacity of NA ginseng polysaccharides. CONCLUSION: This work emphasizes the distinct bioactivities of different ginseng extracts on differentiated preadipocyte signaling pathways, and highlights the importance of TLR4 for mediating the inflammomodulatory role of ginseng polysaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.