In chronic kidney disease (CKD), the level of high-density lipoprotein (HDL) decreases markedly, but there is no strong inverse relationship between HDL-cholesterol (HDL-C) and cardiovascular diseases. This indicates that not only the HDL-C level, but also the other quantitative changes in the HDL particles can influence the protective functionality of these particles, and can play a key role in the increase of cardiovascular risk in CKD patients. The aim of the present study was the evaluation of the parameters that may give additional information about the HDL particles in the course of progressing CKD. For this purpose, we analyzed the concentrations of HDL containing apolipoprotein A-I without apolipoprotein A-II (LpA-I), preβ1-HDL, and myeloperoxidase (MPO), and the activity of paraoxonase-1 (PON-1) in 68 patients at various stages of CKD. The concentration of HDL cholesterol, MPO, PON-1, and lecithin-cholesterol acyltransferase (LCAT) activity were similar in all of the analyzed stages of CKD. We did not notice significant changes in the LpA-I concentrations in the following stages of CKD (3a CKD stage: 57 ± 19; 3b CKD stage: 54 ± 15; 4 CKD stage: 52 ± 14; p = 0.49). We found, however, that the preβ1-HDL concentration and preβ1-HDL/LpA-I ratio increased along with the progress of CKD, and were inversely correlated with the estimated glomerular filtration rate (eGFR), even after adjusting for age, gender, triacylglycerols (TAG), HDL cholesterol, and statin therapy (β = −0.41, p < 0.001; β = −0.33, p = 0.001, respectively). Our results support the earlier hypothesis that kidney disease leads to the modification of HDL particles, and show that the preβ1-HDL concentration is significantly elevated in non-dialyzed patients with advanced stages of CKD.
Objectives Low-density lipoprotein cholesterol (LDL-C) is the main laboratory parameter used for the management of cardiovascular disease. The aim of this study was to compare measured LDL-C with LDL-C as calculated by the Friedewald, Martin/Hopkins, Vujovic, and Sampson formulas with regard to triglyceride (TG), LDL-C and non-high-density lipoprotein cholesterol (non-HDL-C)/TG ratio. Methods The 1,209 calculated LDL-C results were compared with LDL-C measured using ultracentrifugation-precipitation (first study) and direct (second study) methods. The Passing-Bablok regression was applied to compare the methods. The percentage difference between calculated and measured LDL-C (total error) and the number of results exceeding the total error goal of 12% were established. Results There was good correlation between the measurement and calculation methods (r 0.962–0.985). The median total error ranged from −2.7%/+1.4% (first/second study) for Vujovic formula to −6.7%/−4.3% for Friedewald formula. The numbers of underestimated results exceeding the total error goal of 12% were 67 (Vujovic), 134 (Martin/Hopkins), 157 (Samspon), and 239 (Friedewald). Less than 7% of those results were obtained for samples with TG >4.5 mmol/L. From 57% (Martin/Hopkins) to 81% (Vujovic) of underestimated results were obtained for samples with a non-HDL-C/TG ratio of <2.4. Conclusions The Martin/Hopkins, Vujovic and Sampson formulas appear to be more accurate than the Friedewald formula. To minimize the number of significantly underestimated LDL-C results, we propose the implementation of risk categories according to non-HDL-C/TG ratio and suggest that for samples with a non-HDL-C/TG ratio of <1.2, the LDL-C level should not be calculated but measured independently from TG level.
Background: Chronic kidney disease (CKD) associates with complex lipoprotein disturbances resulting in high cardiovascular risk. Apolipoprotein E (APOE) is a polymorphic protein with three common isoforms (E2; E3; E4) that plays a crucial role in lipoprotein metabolism, including hepatic clearance of chylomicrons and very low-density lipoprotein (VLDL) remnants, and reverse cholesterol transport. It demonstrates anti-atherogenic properties but data concerning the link between polymorphism and level of APOE in CKD patients are inconclusive. The aim of our research was to assess the relationship between APOE gene polymorphism and APOE concentration and its redistribution among lipoproteins along with CKD progression. Methods: 90 non-dialysed CKD patients were included into the study. Real time PCR was used for APOE genotyping. APOE level was measured in serum and in isolated lipoprotein fractions (VLDL; IDL + HDL; HDL). Kidney function was assessed using eGFR CKD-EPI formula. Results: The population was divided into three APOE genotype subgroups: E2(ε2ε3), E3(ε3ε3) and E4(ε3ε4). The highest APOE level was observed for the E2 subgroup (p < 0.001). APOE concentration positively correlated with eGFR value in the E2 subgroup (r = 0.7, p < 0.001) but inversely in the E3 subgroup (r = − 0.29, p = 0.02).). A lower concentration of APOE in the E2 subgroup was associated with its diminished contents in HDL and IDL + LDL particles. In the E3 subgroup, the higher concentration of APOE was related to the increased number of non-HDL lipoproteins. Conclusion: In patients with CKD, APOE genotype as well as renal function are associated with the concentration of APOE and its redistribution among lipoprotein classes.
The aim of the present study was to clarify whether the activity of SCD1 in adipose tissue contributes to the increased content of serum MUFA in patients with CKD. Moreover, gene expression of SREBP-1c in adipose tissue was assessed to get further insight into the mechanisms responsible for the observed alterations in serum MUFA profile in those patients. Methods Plasma samples were collected from 46 patients with CKD stage 5 (predialysis and dialyzed), as well as from 57 controls without CKD. Subcutaneous adipose tissue was taken from 22 of the patients with CKD at the time of kidney transplantation, and from 11 controls during hernia surgery. Serum and adipose tissue MUFA contents were assessed by gas chromatography-mass spectrometry as described previously. 3 SCD1 activity was estimated based on an oleic acid / stearic acid desaturation index (18:1/18:0 DI). SCD1 and SREBP-1c mRNA levels were measured in samples of subcutaneous adipose tissue of patients and controls by real-time reverse transcriptase-polymerase chain reaction. Dietary habits were assessed with the use of the Food Frequency Questionnaire with 6 answers (FFQ6). 5 FFQ6 is the most common dietary assessment tool used in epidemiologic studies, validated for Polish population. It consists of a list of 55 categories, further divided into specific foods or beverages. The major PUFA-rich products assessed included: oils, nuts, seeds, and various fish. The data are presented as mean and SD or median and interquartile range (IQR), as appropriate. The assumption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.