Topical drug delivery system is defined as the pharmaceutical dosage form which when applied onto the skin provides protection of skin and prevents serious skin disorders. Topical drug are being used for several years and still have its potential in new pharmaceutical technologies investigated. Skin is the most easily accessible organ of the body which has the potential to facilitate the delivery of several drugs with better efficacy, confining the pharmacological or other effect of the drug to the surface of the skin. Micelles are colloidal particles with a size smaller than 100 nm that allow a great depth of tissue penetration for targeted drug delivery, but rapidly disintegrate in the body. Microparticles containing micelles have the potential for delivering hydrophobic drug encapsulated in micelles on the target site in the specific part of the body. Micellar microparticles allow the improvement of solubility and dissolution of poorly soluble drugs. Microparticles containing micelles have the potential for delivering micelle-encapsulated hydrophobic drugs in targeted therapy. This article reviews the topical drug delivery system, colloidal drug delivery system and aspects and literature reviewed on micellar microparticles and its advantages in pharmaceuticals. An overview of reviews was conducted to locate published literature between 2000 and 2017.
With the first case of a highly infectious virus named Coronavirus in Wuhan, China in December 2019, this deadly virus was declared a pandemic by WHO. COVID-19 was found to be very similar to patients infected with MERS-CoV and SARS-CoV. The virus was transmitted from bats to humans through some unidentified intermediary. Since its introduction in humans, it has infected 118000 people, killing 3583 till last week of May 2020 in India. The reported route of transmission is inhalation or direct contact with the infected surface or patients. This symptomatic disease includes symptoms such as cough, fever, sore throat, fatigue, and in some severe patients, it may cause multiple organ failure, pneumonia, severe or acute respiratory diseases. In some cases people may be asymptomatic till 14 d of infection. The patients with mild illness are usually isolated and others are prevented with protective measures such as medical mask, hand hygiene. In the present article, the epidemiology, route of transmission, clinical symptoms, prevention, management, treatment and role and responsibility of health workers is overviewed on the basis of published research and review articles and current state of knowledge.
With the rapid pace of development in industrial sector, the pharma sector and researchers involved are equally contributing in developing the latest technology for the growth and development. The computer-aided designs and manufacturing that provides 3 Dimensional printed dosage forms is the new step being taken into consideration. With the FDA approval to first 3D printed tablet in August 2015, Spritam, 3 Dimensional printing (3DP) has become the all new method for preparation of drug delivery system. 3D printing has the capability of dispensing the drug more accurately, precisely, and the layer by layer assembly helps in forming complex composition and geometries. 3D printing enables the preparation of personalised dosage form and tailored release profiles. 3D printing can be seen as future of solid dosage forms produced on demand, with customised dose and possibly lower in cost. It can help in reducing side effects caused by excessive doses. This review highlights the 3D printing technology and its applications in growth of pharmaceutical sector. An overview of reviews was conducted to locate published literature between 2000 and 2017.
Objective: The objective of the present investigation was to design and evaluate a gel containing lycopene loaded colloidal microparticles. Methods: The lycopene loaded colloidal microparticles were successfully prepared by Cloud point technique to form colloids using Tween 40 and Tween 60 surfactant solution and then incorporated into microparticles by solvent evaporation method using polymer like HPMC and ethyl cellulose. These colloidal microparticles were evaluated for particle size (PS), drug loading (DL), entrapment efficiency (EE), Scanning Electron Microscopy (SEM). Further, these colloidal microparticles were incorporated into a topical formulation i.e., gel. This topical formulation was then evaluated for macroscopic examination, viscosity, drug content, spreadability, antioxidant activity, in vitro permeation and release kinetics. Results: Colloidal microparticles were successfully prepared and the particle size, drug loading and entrapment efficiency were found to be 249.45±14.2 μm, 49.8±0.96 % and 93.4±0.26 % respectively. FTIR study depicted no chemical interaction between pure drug lycopene and other excipients. The topical formulation showed sustained release and followed Korsmeyer-Peppas release kinetics model. Conclusion: The sustained release topical formulation of lycopene was successfully prepared using Tween 40 and Tween 60 surfactant solution and combination of HPMC and ethyl cellulose and evaluated for several parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.