The Paleocene-Eocene Thermal Maximum (PETM; ~55.9 Ma) was a geologically rapid warming period associated with carbon release, which caused a marked increase in the hydrological cycle. Here, we use lithium (Li) isotopes to assess the global change in weathering regime, a critical carbon drawdown mechanism, across the PETM. We find a negative Li isotope excursion of ~3‰ in both global seawater (marine carbonates) and in local weathering inputs (detrital shales). This is consistent with a very large delivery of clays to the oceans or a shift in the weathering regime toward higher physical erosion rates and sediment fluxes. Our seawater records are best explained by increases in global erosion rates of ~2× to 3× over 100 ka, combined with model-derived weathering increases of 50 to 60% compared to prewarming values. Such increases in weathering and erosion would have supported enhanced carbon burial, as both carbonate and organic carbon, thereby stabilizing climate.
The riverine transport of elements from land to ocean is an integral flux for many element cycles and an important climate regulating process over geological timescales. This flux consists of both dissolved and particulate material. The world's rivers are estimated to transport between 16.6 and 30 Gt yr À1 of particulate material, considerably higher than the dissolved flux of $1 Gt yr À1 . Therefore, the dissolution of particulate material upon arrival in estuaries and coastal waters may be a significant flux for many elements. Here we assess the role of riverine particulate material dissolution in seawater with closed-system experiments using riverine bedload material and estuarine sediment from western Iceland mixed with open ocean seawater. Both particulate materials significantly changed the elemental concentrations of the surrounding water with substantial increases in Si concentrations indicative of silicate dissolution. Seawater in contact with bedload material shows considerable enrichment of Ca, Mg, Mn, and Ni, while Li and K concentrations decrease. Moreover, the 87 Sr/ 86 Sr of seawater decreases with time with little change in Sr concentrations, indicative of a significant two-way flux between the solid and fluid phases. Mass balance calculations indicate that 3% of the Sr contained in the original riverine bedload was released during 9 months of reaction. In contrast, the estuarine material has a negligible effect on seawater 87 Sr/
86Sr and transition metal concentrations, suggesting that these reactions occur when particulate material first arrives into coastal waters. Solubility calculations performed using the PHREEQC computer code confirm that primary minerals are undersaturated, while secondary minerals such as kaolinite are oversaturated in the reacted fluids. These results demonstrate that riverine transported basaltic particulate material can significantly alter the composition of seawater, although the total concentrations of many major elements in seawater are regulated by the formation of secondary phases. This behavior has important implications for nutrient supply to coastal waters and the isotopic mass balance of several elements in the oceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.