For the simulation of equilibrium states and finite-temperature response functions of stronglycorrelated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS -often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable timescales in both methods and we find that in this regard, METTS do not outperform purifications.
Based on the density matrix renormalization group (DMRG), strongly correlated quantum manybody systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1/2 XXZ chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.
Response functions Ax(t)By(0) for one-dimensional strongly correlated quantum many-body systems can be computed with matrix product state (MPS) techniques. Especially, when one is interested in spectral functions or dynamic structure factors of translation-invariant systems, the response for some range |x − y| < is needed. We demonstrate how the number of required time-evolution runs can be reduced substantially: (a) If finite-system simulations are employed, the number of time-evolution runs can be reduced from to 2 √ . (b) To go beyond, one can employ infinite MPS (iMPS) such that two evolution runs suffice. To this purpose, iMPS that are heterogeneous only around the causal cone of the perturbation are evolved in time, i.e., the simulation is done with infinite boundary conditions. Computing overlaps of these states, spatially shifted relative to each other, yields the response functions for all distances |x−y|. As a specific application, we compute the dynamic structure factor for ground states of bilinear-biquadratic spin-1 chains with very high resolution and explain the underlying low-energy physics. To determine the initial uniform iMPS for such simulations, infinite-system density-matrix renormalization group (iDMRG) can be employed. We discuss that, depending on the system and chosen bond dimension, iDMRG with a cell size nc may converge to a non-trivial limit cycle of length m. This then corresponds to an iMPS with an enlarged unit cell of size mnc. arXiv:1804.09163v2 [cond-mat.str-el]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.