Preparation-free and skin compliant biopotential electrodes with high recording quality enable wearables for future healthcare and the Internet of Humans. Here, super-soft and self-adhesive electrodes are presented for use on dry and hairy skin without skin preparation or attachment pressure. The electrodes show a skin-contact impedance of 50 kΩ cm at 10 Hz that is comparable to clinical standard gel electrodes and lower than existing dry electrodes. Microstructured electrodes inspired by grasshopper feet adhere repeatedly to the skin with a force of up to 0.1 N cm without further attachment even during strong movement or deformation of the skin. Skin compliance and adhesive properties of the electrodes result in reduction of noise and motion artifacts superior to other dry electrodes reaching the performance of commercial gel electrodes. The signal quality is demonstrated by recording a high-fidelity electrocardiograms of a swimmer in water. Furthermore, an electrode with soft macropillars is used to detect alpha activity in the electroencephalograms from the back of the head through dense hair. Compared to gel electrodes, the soft biopotential electrodes are nearly imperceptible to the wearer and cause no skin irritations even after hours of application. The electrodes presented here could combine unobtrusive and long-term biopotential recordings with clinical-grade signal performance.
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.