MobilityFirst is a future Internet architecture with mobility and trustworthiness as central design goals. Mobility means that all endpoints -- devices, services, content, and networks -- should be able to frequently change network attachment points in a seamless manner. Trustworthiness means that the network must be resilient to the presence of a small number of malicious endpoints or network routers. MobilityFirst enhances mobility by cleanly separating names or identifiers from addresses or network locations, and enhances security by representing both in an intrinsically verifiable manner, relying upon a massively scalable, distributed, global name service to bind names and addresses, and to facilitate services including device-to-service, multicast, anycast, and context-aware communication, content retrieval, and more. A key insight emerging from our experience is that a logically centralized global name service can significantly enhance mobility and security and transform network-layer functionality. Recognizing and validating this insight is the key contribution of the MobilityFirst architectural effort.
IP forwarding anomalies, triggered by equipment failures, implementation bugs, or configuration errors, can significantly disrupt and degrade network service. Robust and reliable detection of such anomalies is essential to rapid problem diagnosis, problem mitigation, and repair. We propose a simple, robust method that integrates routing and traffic data streams to reliably detect forwarding anomalies, and report on the evaluation of the method in a tier-1 ISP backbone. First, we transform each data stream separately, to produce informative alarm indicators. A forwarding anomaly is then signaled only if the indicators for both streams indicate anomalous behavior concurrently. The overall method is scalable, automated and self-training. We find this technique effectively identifies forwarding anomalies, while avoiding the high false alarms rate that would otherwise result if either stream were used unilaterally.
It is well-known that BGP, the current inter-domain routing protocol, has many deficiencies. This paper describes a hybrid link-state and path-vector protocol called HLP as an alternative to BGP that has vastly better scalability, isolation and convergence properties. Using current BGP routing information, we show that HLP, in comparison to BGP, can reduce the churn-rate of route updates by a factor 400 as well as isolate the effect of routing events to a region 100 times smaller than that of BGP. For a majority of Internet routes, HLP guarantees worst-case linear-time convergence. We also describe a prototype implementation of HLP on top of the XORP router platform. HLP is not intended to be a finished and final proposal for a replacement for BGP, but is instead offered as a starting point for debates about the nature of the next-generation inter-domain routing protocol.
ABSTRACT:Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.