The non-oxidative dehydrogenation of alcohols is considered as an important method to produce aldehydes for the chemical industry and hydrogen gas. However, current industrial processes are oxidative, meaning that the aldehydes are formed along with water, which, in addition to being less energy efficient, poses separation problems. Herein the production of aldehydes from methanol and ethanol on clean and dry Cu(111) and Cu(110) surfaces was investigated in order to understand the catalytic anhydrous dehydrogenation of alcohols. Both ethanol and methanol preferentially react under ultrahigh vacuum conditions at surface defects to yield acetaldehyde and formaldehyde, respectively, in the absence of surface oxygen and water. The amount of alkoxide reaction intermediates measured by scanning tunneling microscopy, and aldehyde and hydrogen products detected by temperature programmed reaction, are increased by inducing more defects in the Cu substrates with Ar ion sputtering. This work also reveals that the Cu model surfaces are not poisoned by the reaction and exhibit 100% selectivity for alcohol dehydrogenation to aldehyde and hydrogen.
The non oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 o C, and in ultra-high vacuum using model PtCu (111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are seven times higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a
Ni/Au is an alloy combination that while, immiscible in the bulk, exhibits a rich array of surface geometries that may offer improved catalytic properties. It has been demonstrated that the addition of small amounts of Au to Ni tempers its reactivity and reduces coking during the steam reforming of methane. Herein, we report the first successful preparation of dilute Ni−Au alloys (up to 0.04 ML) in which small amounts of Ni are deposited on, and alloyed into, Au(111) using physical vapor deposition. We find that the surface structure can be tuned during deposition via control of the substrate temperature. By adjusting the surface temperature in the 300−650 K range, we are able to produce first Ni islands, then mixtures of Ni islands and Ni−Au surface alloys, and finally, when above 550 K, predominantly island-free Ni−Au single atom alloys (SAAs). Low-temperature scanning tunneling microscopy (STM) combined with density functional theory calculations confirm that the Ni−Au SAAs formed at high temperature correspond to Ni atoms exchanged with surface Au atoms. Ni−Au SAAs form preferentially at the elbow regions of the Au(111) herringbone reconstruction, but at high coverage also appear over the whole surface. To investigate the adsorption properties of Ni−Au SAAs, we studied the adsorption and desorption of CO using STM which allowed us to determine at which atomic sites the CO adsorbs on these heterogeneous alloys. We find that small amounts of Ni in the form of single atoms increases the reactivity of the substrate by creating single Ni sites in the Au surface to which CO binds significantly more strongly than Au. These results serve as a guide in the design of surface architectures that combine Au's weak binding and selective chemistry with localized, strong binding Ni atom sites that serve to increase reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.