We explore and relate two notions of monotonicity, stochastic and realizable, for a system of probability measures on a common finite partially ordered set (poset) S when the measures are indexed by another poset A. We give counterexamples to show that the two notions are not always equivalent, but for various large classes of S we also present conditions on the poset A that are necessary and sufficient for equivalence. When A = S, the condition that the cover graph of S have no cycles is necessary and sufficient for equivalence. This case arises in comparing applicability of the perfect sampling algorithms of Propp and Wilson and the first author of the present paper. Short title. Stochastic and realizable monotonicity.
By developing and applying a broad framework for rejection sampling using auxiliary randomness, we provide an extension of the perfect sampling algorithm of Fill (1998) to general chains on quite general state spaces, and describe how use of bounding processes can ease computational burden. Along the way, we unearth a simple connection between the Coupling From The Past (CFTP) algorithm originated by Propp and Wilson (1996) and our extension of Fill's algorithm.
Abstract. Given two Markov kernels k and k on an ordered Polish space, such that k is stochastically dominated by k , we establish the existence of: (i) a monotone bivariate Markov kernel whose marginals are k and k and (ii) an upward coupler from k to k . This extends the results of Strassen, Kamae, Krengel and O'Brien to Markov kernels. Two examples are also given. The first is a simple illustration of our original motivation for this work, while the second demonstrates the optimality of our main result. The key technique is a combination of the standard probability/charge approach and the use of measurable selections of multivalued measurable maps.
By developing and applying a broad framework for rejection sampling using auxiliary randomness, we provide an extension of the perfect sampling algorithm of Fill (1998) to general chains on quite general state spaces, and describe how use of bounding processes can ease computational burden. Along the way, we unearth a simple connection between the Coupling From The Past (CFTP) algorithm originated by Propp and Wilson (1996) and our extension of Fill's algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.