miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia.
Rheumatoid arthritis (RA)‐associated interstitial lung disease (ILD), a primary cause of mortality in patients with RA, has limited treatment options. A previously established RA model in D1CC transgenic mice aberrantly expressed major histocompatibility complex class II genes in joints, developing collagen II‐induced polyarthritis and anti‐cyclic citrullinated peptide antibodies and interstitial pneumonitis, similar to those in humans. Molecular hydrogen (H2) is an efficient antioxidant that permeates cell membranes and alleviates the reactive oxygen species‐induced injury implicated in RA pathogenesis. We used D1CC mice to analyse chronic lung fibrosis development and evaluate H2 treatment effects. We injected D1CC mice with type II collagen and supplied them with H2‐rich or control water until analysis. Increased serum surfactant protein D values and lung densities images were observed 10 months after injection. Inflammation was patchy within the perilymphatic stromal area, with increased 8‐hydroxy‐2ʹ‐deoxyguanosine‐positive cell numbers and tumour necrosis factor‐α, BAX, transforming growth factor‐β, interleukin‐6 and soluble collagen levels in the lungs. Inflammatory and fibrotic changes developed diffusely within the perilymphatic stromal area, as observed in humans. H2 treatment decreased these effects in the lungs. Thus, this model is valuable for studying the effects of H2 treatment and chronic interstitial pneumonia pathophysiology in humans. H2 appears to protect against RA‐ILD by alleviating oxidative stress.
Aims
It is still unclear which enzymes contribute to the adaptive enhancement of alcohol metabolism by chronic alcohol consumption (CAC). ADH1 (Class I) has the lowest Km for ethanol and the highest sensitivity for 4-methylpyrazole (4MP) among ADH isozymes, while ADH3 (Class III) has the highest Km and the lowest sensitivity. We investigated how these two major ADHs relate to the adaptive enhancement of alcohol metabolism.
Methods
Male mice with different ADH genotypes (WT, Adh1−/− and Adh3−/−) were subjected to CAC experiment using a 10% ethanol solution for 1 month. Alcohol elimination rate (AER) was measured after ethanol injection at a 4.0 g/kg dose. 4MP-sensitive and -insensitive AERs were measured by the simultaneous administration of 4MP at a dose of 0.5 mmol/kg in order to estimate ADH1 and non-ADH1 pathways.
Results
AER was enhanced by CAC in all ADH genotypes, especially more than twofold in Adh1−/− mice, with increasing ADH1 and/or ADH3 liver contents, but not CYP2E1 content. 4MP-sensitive AER was also increased by CAC in WT and Adh3−/− strains, which was greater in Adh3−/− than in WT mice. The sensitive AER was increased even in Adh1−/− mice probably due to the increase in ADH3, which is semi-sensitive for 4MP. 4MP-insensitive AER was also increased in WT and Adh1−/− by CAC, but not in Adh3−/− mice.
Conclusion
ADH1 contributes to the enhancement of alcohol metabolism by CAC, particularly in the absence of ADH3. ADH3 also contributes to the enhancement as a non-ADH1 pathway, especially in the absence of ADH1.
Alcohol dehydrogenases 1 and 3 would accomplish the pharmacokinetic adaptation to CAC in the early period. ADH1 contributes to the metabolic pharmacokinetics of CAC with a decrease in AUC in conjunction with an increase of AER by increasing the enzyme content in the presence of ADH3. ADH3 also contributes to a decrease in AUC in conjunction with not only an increase in AER but also a decrease in C by increasing the enzyme content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.