The notion of higher-order topological insulator has opened up a new avenue toward novel topological states and materials. Particularly, a 3D higher-order topological insulator can host topologically protected 1D hinge states, referred to as the second-order topological insulator, or 0D corner states, referred to as the third-order topological insulator. Similarly, a 3D higher-order topological semimetal can be envisaged, if it hosts states on the 1D hinges or 0D corners. Here, we report the first realization of a second-order topological Weyl semimetal in a 3D phononic crystal, which possesses Weyl points in 3D momentum space, gapped surface states on the 2D surfaces and gapless hinge states on the 1D hinges. The 1D hinge states in a triangle-shaped sample exhibit a dispersion connecting the projections of the Weyl points. Our results extend the concept of the higher-order topology from the insulator to the semimetal, which may play a significant role in topological physics and produce new applications in materials.
Three-dimensional topological nodal lines, the touching curves of two bands in momentum space, which give rise to drumhead surface states, provide an opportunity to explore a variety of exotic phenomena. However, solid evidence for a flat drumhead surface state remains elusive. In this paper, we report a realization of three-dimensional nodal line dispersions and drumhead surface states in phononic crystal. Profiting from its macroscopic nature, the phononic crystal permits a flexible and accurate fabrication for materials with ring-like nodal lines and drumhead surface states. Phononic nodal rings of the lowest two bands and, more importantly, topological drumhead surface states are unambiguously demonstrated. Our system provides an ideal platform to explore the intriguing properties of acoustic waves endowed with extraordinary dispersions.
Square-root topological states are new topological phases, whose topological property is inherited from the square of the Hamiltonian. We realize the first-order and secondorder square-root topological insulators in phononic crystals, by putting additional cavities on connecting tubes in the acoustic Su-Schrieffer-Heeger model and the honeycomb lattice, respectively. Because of the square-root procedure, the bulk gap of the squared Hamiltonian is doubled. In both two bulk gaps, the square-root topological insulators possess multiple localized modes, i.e., the end and corner states, which are evidently confirmed by our calculations and experimental observations. We further propose a second-order square-root topological semimetal by stacking the decorated honeycomb lattice to three dimensions.
Topological phases, including the conventional first-order and higher-order topological insulators and semimetals, have emerged as a thriving topic in the fields of condensed-matter physics and material science. Usually, a topological insulator is characterized by a fixed order topological invariant and exhibits associated bulkboundary correspondence. Here, we realize a new type of topological insulator in a bilayer phononic crystal, which hosts simultaneously the first-order and second-order topologies, referred here as the hybrid-order topological insulator. The one-dimensional gapless helical edge states, and zero-dimensional corner states coexist in the same system. The new hybrid-order topological phase may produce novel applications in topological acoustic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.