BackgroundInflammatory bowel disease is an immunologically mediated disease. Notably, it is less common in countries where there is a greater risk of exposure to helminths. In our study, we examined the modulatory effect of the laminated layer extracted from the cyst wall of a helminth parasite, Echinococcus granulosus, on dextran sulfate sodium (DSS)-induced colitis in mice.MethodsAn acute colitis was induced in BALB/c mice using 2.5% w/v DSS in drinking water. The crude extract of E. granulosus laminated layer was injected intraperitoneally daily, starting 3 days before colitis induction. The Disease Activity Index was monitored daily, colon length and weight were measured and histological scores were evaluated. Nitric oxide (NO) and cytokine levels (interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and interleukin 10 (IL-10)) were assessed by enzyme-linked immunosorbent assay. In addition, the colonic expression of inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NF-κB) was examined. Statistical analyses were performed by one-way analysis of variance and the survival rate was analyzed by the long rank test.ResultsHydatid laminated layer pretreatment significantly improved the clinical symptoms and histological scores (*** p < 0.01) observed during DSS-induced colitis and maintained mucus production by goblet cells. Furthermore, treatment with hydatid laminated layer caused a significant decrease in NO, IFN-γ (** p < 0.01) and TNF-α production (* p < 0.05) and an increase in IL-10 production. These results were associated with localized downregulation of iNOS and NF-κB expression.ConclusionsOur results demonstrate the potent anti-inflammatory effects of hydatid laminated layer. Furthermore, preventive treatment with the laminated layer played a beneficial role in maintaining the integrity of the intestinal mucosal barrier against DSS-induced injury.
Our results indicate an antihydatic scolicidal effect and immunomodulatory properties of PGE, suggesting its potential therapeutic role against Echinococcus granulosus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.