utama dalam pembangunan suatu Negara adalah meningkatkan kesejahteraan rakyat. Salah satu penyebab dari permasalahan kesejahteraan rakyat adalah pembangunan yang dilakukan oleh pemerintah tidak terlaksana secara merata atau dengan kata lain pemerintah dalam melaksanakan pembangunan di suatu daerah tidak tepat sasaran. salah satu solusi yang dapat diterapkan adalah pengidentifikasian karakteristik berdasarkan tingkat kesejahteraan rakyat tiap daerah sehingga pemerintah dapat mengambil atau memutuskan kebijakan dan strategi yang baik/tepat sasaran dalam pembangunan. Dalam penilitian ini akan dibahas mengenai pengelompokan Kabupaten/Kota di Propinsi Sulawesi Selatan berdasarkan indikator kesejahteraan rakyat dengan analisis cluster. Dimana analisis cluster merupakan teknik pengelompokan objek-objek berdasarkan kemiripan karakteristik yang dimiliki. Tujuan dari penelitian ini adalah untuk mengelompokkan Kabupaten/Kota di Propinsi Sulawesi Selatan berdasarkan beberapa indikator kesejahteraan rakyat. Salah satu metode dalam analisis cluster untuk mengelompokkan adalah metode Average Linkage yaitu metode yang ditentukan dari rata-rata jarak seluruh objek pada cluster lainnya. Dari hasil analisis diperoleh bahwa pengelompokan 24 Kabupaten/Kota di Propinsi Sulawesi Selatan dapat dibentuk tiga kelompok (cluster), yaitu Cluster 1 terdiri 21 Kabupaten/Kota dimana cluster ini sangat dipengaruhi oleh variabel Kepemilikan Rumah Sendiri (X11). Selain dari variabel PDRB (X1) dan Kepemilikan Rumah Sendiri (X11) untuk ketujuh variabel lainnya memiliki rata-rata (centroid) yang paling rendah diantara cluster lainnya., Cluster 2 terdiri 2 Kabupaten/Kota dimana pada cluster ini dominan terhadap variabel Rata-Rata Lama Sekolah. Cluster 2, untuk variabel PDRB (X1) memiliki rata-rata yang paling rendah. Sedangkan untuk kedelapan variabel lainnya memiliki rata-rata (centroid) yang cukup tinggi (sedang)., dan Cluster 3 terdiri 1 Kabupaten/Kota yaitu Kota Makassar dengan variabel yang mempengaruhi yaitu variabel Kepadatan Penduduk (X2). Pada Cluster ini untuk kedelapan variabel lainnya memiliki rata-rata (centroid) yang paling tinggi diantara cluster lainnya. Sedangkan untuk variabel Kepemilikan Rumah Sendiri (X11) merupakan yang paling rendah.
Despite the reality that the JKN program is necessary for all Indonesian residents, there are still individuals who have not enrolled as JKN members. The purpose of this research is to evaluate and explain the application of individual health services and the government's impediments to citizens receiving legal protection under the BPJS health health social security system. The research approach adopted is one of normative legal research. A descriptive legal approach was adopted in the assessment process. According to the findings of this study, the application of individual health services in the framework of legal protection for people who are not enrolled in the BPJS Health social security system is restricted to the supply of health facilities. The state does not offer legal protection in the form of duty for delivering health care, because individuals who are not enrolled as BPJS Health participants will be registered as general patients, requiring them to pay for treatments individually or through private insurance. While the idea of BPJS Health as given in the BPJS Law requires everyone to register for BPJS Health, BPJS Health still has several inadequacies, which causes some individuals to be hesitant and unwilling to register as BPJS Health participants. The government cannot claim that the lack of legal protection in health services is the responsibility of those who do not register as BPJS Health participants, because this is a result or implication of the numerous deficiencies in health services that continue to employ BPJS Health.
This paper aims to give a unique view of looking at how SMEs in Indonesia applying the concept of smart manufacturing along with the challenges of smart manufacturing adoption in supporting technologies infrastructure in Indonesia and its current implementation. There are several challenges that were identified through the smart manufacturing adoption in Indonesia. The manufacturing industry has a great contribution to developing countries such as Indonesia. It is considered as the engine power for Indonesia’s economic growth. Moreover, by considering the value of SMEs in Indonesia, this research puts more attention on smart manufacturing implementation on SMEs. This study provides two cases from SMEs based on the SMEs scale and measuring their productivity from using the traditional method and after adopting the technology used on their business operations. The two cases indicate that the firms have an awareness of the importance of smart manufacturing implementation and its effect to the performance of the firm. However, direct migration to an advanced cyber-physical manufacturing system is not a practical option for the firms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.