Genetic algorithms are frequently used to solve optimization problems. However, the problems become increasingly complex and time consuming. One solution to speed up the genetic algorithm processing is to use parallelization. The proposed parallelization method is coarse-grained and employs two levels of parallelization: message passing with MPI and Single Instruction Multiple Threads with GPU. Experimental results show that the accuracy of the proposed approach is similar to the sequential genetic algorithm. Parallelization with coarse-grained method, however, can improve the processing and convergence speed of genetic algorithms.
Persaingan global yang dihadapi saat ini, menuntut adanya perubahan di dalam pembelajaran agar kecakapan dan keterampilan anak didik semakin berkembang. Kemampuan literasi matematika menjadi salah satu yang harus dimiliki para siswa dalam menghadapi tantangan global tersebut. Kegiatan pelatihan dan pendampingan Computational Thinking dengan menerapkan High Order Thinking Skill (HOTS) yang dilakukan diharapkan dapat menambah wawasan siswa terhadap pemahaman dalam melakukan problem solving. Serta, menumbuhkan kreativitas siswa, budaya informasi, algoritma dan berpikir komputasional dalam menyelesaikan suatu permasalahan dalam bentuk tantangan yang dikenal dengan nama Bebras Challenge. Dalam tahapan pelaksanaannya dilakukan tahapan-tahapan yakni pre-test, pelatihan & pendampingan, serta post-test. Pre-test terhadap 15 siswa menunjukkan rerata siswa dalam menjawab soal secara benar adalah sebanyak 60%. Pelatihan-dan pendampingan dilakukan melalui aplikasi daring. Pertemuan dilaksanakan sebanyak 5 kali pertemuan. Sedangkan hasil dari post-test mengalami peningkatan yakni menjadi 78%. Hal ini menunjukkan tingkat keberhasilan siswa dalam memecahkan persoalan mengalami peningkatan yang baik.
Computer Assisted Testing (CAT) system in Indonesia has been commonly used but only to displaying random exam questions and unable to detect the maximum performance of the test participants. This research proposes a simple way with a good level of accuracy in identifying the maximum ability of test participants. By applying the Bayesian probabilistic in the selection of random questions with a weight of difficulties, the system can obtain optimal results from participants compared to sequential questions. The accuracy of the system measured on the choice of questions at the maximum level of the examinee alleged ability by the system, compared to the correct answer from participants gives an average accuracy of 75% compared to 33% sequentially. This technique allows tests to be carried out in a shorter time without repetition, which can affect the fatigue of the test participants in answering questions.
Ketinggian gelombang laut menjadi faktor utama keselamatan pelayaran di laut. Teknologi prediksi diperlukan untuk memperkirakan ketinggian selanjutnya yang akan muncul. Prediksi bisa dilakukan dengan mempelajari pola-pola perubahan tinggi gelombang air laut. Jaringan Syaraf Tiruan dapat digunakan untuk melakukan prediksi, dan Particle Swarm Optimization digunakan untuk melatih bobot dan bias jaringan syaraf agar dapat melakukan prediksi. Namun, banyaknya data pada pembelajaran membuat pemrosesan pelatihan membutuhkan waktu yang lama. Penelitian ini mengusulkan teknik pemrosesan pelatihan dengan membagi tugas pemrosesan data-data tersebut. Pemrosesan ditugaskan dengan teknik pemrograman multithread. Swarm dibagi dengan jumlah thread yang dibangkitkan kemudian ditransfer ke masing-masing thread untuk diproses secara paralel. Hasil percobaan menunjukkan bahwa error prediksi dari pelatihan secara paralel tidak lebih buruk dari pelatihan secara sekuensial, namun kecepatan pelatihan secara paralel lebih cepat dibandingkan dengan pelatihan secara sekuensial
Increasing the crossing of vehicles from Tanjung Uban to Telaga Punggur or vice versa, it is necessary to optimize the selection vehicles partition and determine which vehicles will take precedence in order to achieve accuracy in terms of optimal vehicle load, therefore it takes an algorithm that can produce vehicles based on vahicles placement. This research will try to use genetic algorithm in optimizing Roro vehicles partition. The result of the experiment shows the result in Test then the best fitness result is in the 4th parameter with the number of chromosomes = 5, pc = 0.8, pm = 0.01, 0.05 and is in the 50th generation and the resulting fitness value is 0.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.