Friction stir welding (FSW) is one of the primary fabrication techniques for joining different components, and it has become popular, especially in aluminum alloy structures for marine applications. The welded joint with the friction stir process greatly depends on the process parameters, i.e., feed rate, rotational speed, and pin profile of the tool. In the current study, plates of aluminum 5451 alloy were joined by the FSW technique, and the Taguchi method was used to find the process parameters at an optimal level. The maximum value of tensile strength, i.e., 160.6907 MPa, was achieved using optimum welding conditions of a tool rotation speed of 1400, a feed rate of 18 mm/min, and the tool pin with threads. The maximum value of hardness, i.e., 81.056 HV, was achieved using optimum conditions of 1200 tool rotational speed and a feed rate of 18 mm/min with a tool pin profile having threads. In addition, the contribution in terms of the percentage of each input parameter was found by the analysis of variance (ANOVA). The ANOVA results revealed that the pin profile of the tool has the maximum contribution of 67.77% and 62.42% in achieving the optimum value of tensile strength and hardness, respectively. The study also investigated the joint efficiency of the friction stir welded joint, hardness at the weld zone, and metallography on FSW samples at the optimized level. The effectiveness and reliability of FSW joints for shipping industry applications can be observed by joint efficiency. That was investigated at optimum conditions, and it comes out to be 80.5%.
In this study, the ballistic impact behavior of auxetic sandwich composite human body armor was analyzed using finite element analysis. The auxetic core of the armor was composed of discrete re-entrant unit cells. The sandwich armor structure consisted of a front panel of aluminum alloy (Al 7075-T6), UHMWPE (sandwich core), and a back facet of silicon carbide (SiC) bonded together with epoxy resin. Numerical simulations were run on Explicit Dynamics/Autodyne 3-D code. Various projectile velocities with the same boundary conditions were used to predict the auxetic armor response. These results were compared with those of conventional monolithic body armor. The results showed improved indentation resistance with the auxetic armor. Deformation in auxetic armor was observed greater for each of the cases when compared to the monolithic armor, due to higher energy absorption. The elastic energy dissipation results in the lower indentation in an auxetic armor. The armor can be used safely up to 400 m/s; being used at higher velocities significantly reduced the threat level. Conversely, the conventional monolithic modal does not allow the projectile to pass through at a velocity below 300 m/s; however, the back face becomes severely damaged at 200 m/s. At a velocity of 400 m/s, the front facet of auxetic armor was destroyed; however, the back facet was completely safe, while the monolithic panel did not withstand this velocity and was completely damaged. The results are encouraging in terms of resistance offered by the newly adopted auxetic armor compared to conventional monolithic armor.
The horizontal-axis ocean current turbine under investigation is a three-blade rotor that uses the flow of water to rotate its blade. The mechanical energy of a turbine is converted into electrical energy using a generator. The horizontal-axis ocean current turbine provides a nongrid robust and sustainable power source. In this study, the blade design is optimized to achieve higher efficiency, as the blade design of the hydrokinetic turbine has a considerable effect on its output efficiency. All the simulations of this turbine are performed on ANSYS software, based on the Reynolds Averaged Navier–Stokes (RANS) equations. Three-dimensional (CFD) simulations are then performed to evaluate the performance of the rotor at a steady state. To examine the turbine’s efficiency, the inner diameter of the rotor is varied in all three cases. The attained result concludes that the highest Cm value is about 0.24 J at a tip-speed ratio (TSR) of 0.8 at a constant speed of 0.7 m/s. From 1 TSR onward, a further decrease occurs in the power coefficient. That point indicates the optimum velocity at which maximum power exists. The pressure contour shows that maximum dynamic pressure exists at the convex side of the advancing blade. The value obtained at that place is −348 Pa for case 1. When the dynamic pressure increases, the power also increases. The same trend is observed for case 2 and case 3, with the same value of optimum TSR = 0.8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.