There is enough data available now to believe that nature has provided cure of almost every ailment through herbal medicine or management. Therefore, now there is lot of emphasis on identification, evaluation, development and characterization of numerous plants and their active constituents against several diseases including depression. Depression is not only one of the most common ailments but also a highly complex condition to study. Even though several antidepressant drugs are available now, yet their effectiveness and usefulness are highly questionable especially because of their side effects. As herbal remedies are generally associated with favourable safety profiles therefore they have the possible potential to deliver effective replacements to currently available synthetic antidepressants. More recently, efforts have been focused on characterization of pharmacologically active ingredients and to identify the mode of action of herbal antidepressant medicines. This review describes a brief introduction of different animal models for depression and discusses the advantages and disadvantages for each approach. Then we have summarized possible plant phytochemicals as antidepressant drug and their underlying mechanisms. In the main body of the review, we have discussed in detail the most frequently used plants (21) being investigated for the treatment of depression. Additionally, we have provided the list of medicinal plants (92) representing their origin, parts used, extraction method, evaluation method and possible active ingredient. In the final part of the review we have presented the summary of clinical trials on the use of medical plants for depression and their active constituents.
Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases—including DM2—as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.
Rice (Oryza sativa) is an important staple food crop worldwide, especially in east and southeast Asia. About one-third of rice cultivated area is under saline soil, either natural saline soils or irrigation with brackish water. Salinity stress is among the devastating abiotic stresses that not only affect rice growth and crop productivity but also limit its cultivation area globally. Plants adopt multiple tolerance mechanisms at the morphological, physiological, and biochemical levels to tackle salinity stress. To identify these tolerance mechanisms, this study was carried out under both a controlled glass house as well as natural saline field conditions using 22 green super rice (GSR) lines along with two local varieties (“IRRI 6 and Kissan Basmati”). Several morpho-physiological and biochemical parameters along with stress-responsive genes were used as evaluation criteria under normal and salinity stress conditions. Correlation and Principal Component Analysis (PCA) suggested that shoot-related parameters and the salt susceptible index (SSI) can be used for the identification of salt-tolerant genotypes. Based on Agglomerative Hierarchical Cluster (AHC) analysis, two saline-tolerant (“S19 and S20”) and saline-susceptible (“S3 and S24”) lines were selected for further molecular evaluation. Quantitative RT-PCR was performed, and results showed that expression of 1-5-phosphoribosyl -5-5-phosphoribosyl amino methylidene amino imidazole-4-carboxamide isomerase, DNA repair protein recA, and peptide transporter PTR2 related genes were upregulated in salt-tolerant genotypes, suggesting their potential role in salinity tolerance. However, additional validation using reverse genetics approaches will further confirm their specific role in salt tolerance. Identified saline-tolerant lines in this study will be useful genetic resources for future salinity breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.