Melihat kelemahan dari metode penilaian kerusakan jalan secara visual, salah satunya hasil identifikasi yang bisa bersifat subyektif, maka perlu dibuat suatu algoritma atau metode untuk mengidentifikasi jenis kerusakan jalan. Langkah awal dari proses algoritma berupa pengambilan gambar dengan jenis kamera digital, dihasilkan citra digital. Citra tersebut digunakan untuk pengolahan citra dengan software Matlab untuk menentukan jenis kerusakan jalan secara tepat dan cepat. Pengolahan citra pada penelitian ini meliputi dua tahap, yaitu proses ekstraksi dengan tahapan: wiener filtering dan thresholding, sedangkan proses klasifikasi dengan metode KNN. Hasil yang diperoleh yaitu jenis kerusakan jalan yang dapat diidentifikasi meliputi retak dan retak kulit buaya. Tujuan penelitian adalah berapa besar pengaruh nilai k dari metode KNN terhadap tingkat akurasi jenis kerusakan retak dan retak kulit buaya. Ditemukan bahwa dengan uji coba nilai k yang berbeda-beda, yaitu 1, 8, dan 15, menghasilkan tingkat akurasi yang berbeda untuk tiap jenis kerusakan.Kata kunci :Kerusakan Jalan, Pengolahan Citra, KNN, Tingkat Akurasi
Abstrak Kota Kendari merupakan suatu kawasan perkotaan dengan luas wilayah terkecil dan jumlah penduduk terpadat di Provinsi Sulawesi Tenggara. Bencana kebakaran di Kota Kendari sering terjadi dan telah menimbulkan kerugian yang cukup banyak, hingga menelan korban jiwa. Penelitian ini bertujuan untuk melakukan penilaian terhadap tingkat risiko bencana kebakaran di Kota Kendari dengan menggunakan pendekatan Sistem Pakar (Expert System) berbasis Sistem Informasi Geografis (SIG). Hasil penelitian menujukkan bahwa tingkat risiko kebakaran di Kota Kendari terklasifikasi dalam empat kelas, yaitu tingkat risiko kebakaran sangat tinggi sebanyak 206 grid, tingkat risiko kebakaran tinggi sebanyak 6.815 grid, tingkat risiko kebakaran rendah sebanyak 46.175 grid, dan tingkat risiko kebakaran sangat rendah sebanyak 54.640 grid. Tingkat risiko kebakaran sangat tinggi di Kota Kendari merupakan kawasan terbangun yang berpenduduk padat dengan dominasi jenis material bangunan kayu dan campuran, terletak pada daerah dengan morfologi berbukit, dan aksesibilitas hanya dilalui oleh jalan umum yang memiliki lebar jalur lalu lintas <4 meter. Wilayah dengan tingkat risiko sangat rendah merupakan kawasan non-terbangun yang didominasi oleh badan air (sungai dan rawa), hutan dan sebagian kawasan pertanian (kebun). Kawasan tersebut bermorfologi datar, berbukit dan bergunung. Kata kunci : Model, SIG, Sistem Pakar, Risiko KebakaranAbstract Kendari city is an urban area with the smallest area and the densest population in Southeast Sulawesi Province. Fire disaster in the city of Kendari often occurs and has caused considerable losses, to claim casualties. This study aims to assess the risk degree of fire disaster in Kendari City using Expert System Approach based on Geographic Information System (GIS). The results showed that the degrees of fire risk in Kendari City were classified into four classes, ie very high fire risk degree, 206 grid, high fire risk degree, 6,815 grid, low fire risk degree, 46.175 grid, and very low fire risk, as many as 54.640 grids. The high fire risk degree in Kendari City is a densely populated area, with dominance of wooden and mixed building materials, located in areas with hilly morphology, and accessibility is only by public roads with a traffic width of <4 meters, while fires with a very low-risk level is a non-built area dominated by water bodies (rivers and swamps), moist forests and some agricultural areas (gardens). This area is flat, hilly and mountainous.
Background:Severe musculoskeletal trauma can trigger an inflammatory response, and an excessive inflammatory response can lead to systemic inflammatory response syndrome and multiorgan failure. High-mobility group box 1 (HMGB1) is an early mediator pro-inflammatory cytokine in sterile injuries and a late cytokine mediator in infection and sepsis. Previous research has shown that administration of systemic lidocaine can inhibit HMGB1 expression in macrophages of septic rats. The aim of this study was to demonstrate the efficacy of systemic lidocaine to inhibit HMGB1 mRNA and protein in a BALB/c mouse model of sterile inflammation due to closed fracture musculoskeletal injury.Materials and Methods:Twenty adult male BALB/c mice were divided into lidocaine and control groups. The closed fracture musculoskeletal injury was performed by breaking the left thigh bone of the mice. Four hours after undergoing the closed fracture, the lidocaine group was treated with lidocaine intravenous (2 mg/kg). The same volume of distilled water was injected into the control group instead of lidocaine. HMGB1 mRNA expression was examined with real-time polymerase chain reaction, and HMGB1 protein level was determined with enzyme-linked immunosorbent assay.Results:The expression of HMGB1 mRNA and protein levels in mice that sustained inflammation due to a closed fracture musculoskeletal injury was significantly decreased in the lidocaine group (P < 0.00 and P < 0.00 for mRNA and protein, respectively).Conclusions:Intravenous administration of lidocaine effectively inhibited the inflammatory process in BALB/c mice that underwent closed fracture musculoskeletal injury by suppressing HMGB1 mRNA transcription and HMGB1 protein translation.
We often use the plastics daily, containing of polyethylene plastic polymers which recently can be utilized as additional material for road pavements. Several studies have attempted to find the optimum proportion of an asphalt mixture using modified Asbuton which is local bitumen abundantly deposited in Buton Island Indonesia, added with plastic waste. The optimum proportion of the asphalt mixture is influenced by many factors, such as the interactions of the material component in the asphalt mixture. To obtain the optimum proportion based a single factor, many studies employ statistical methods. This study aims to determine the optimum proportion for the asphalt mixture of the modified Asbuton with PET plastic waste by using a Response Surface Methodology (RSM). The employed RSM is the Expert Version 12 design (Stat-Ease, Inc., Minneapolis, MN, USA, 2020), in which the statistical modeling based on Box Behnken Design (BBD) and three factorial levels. The results obtained in this study show that the RSM optimization could achieve the asphalt mixtures characteristics including the stability, Marshall Quotient (MQ), Void in MIX (VIM), Void Mineral Aggregate (VMA) and density, in the level of satisfying the specification requirements of Ministry of Public Works of Indonesia. The optimum stability is at 2002.72 kg, fulfilled the minimum density of 800 kg. For the MQ, the optimal point of MQ is 500.68 kg/mm, satisfied the minimum the MQ standard minimum of 250 kg/mm. In addition, the optimal VIM is at 3.40%, satisfying the VIM specifications in the range of 3–5%. The optimal VMA response is at 21.65%, which is also satisfied the VMA specification, 15%.
Non-biodegradable waste plastic made of polyethylene terephthalate (PET) based drinking bottles waste was used as additive in asphalt concrete mixture production. This paper used modified Buton asphalt (MBA) as base binder. The asphalt concrrete mixtures containing 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5% of waste PET were prepared with one source of aggregates, filler and stone dust. The effect of waste PET and MBA to asphalt concrete mixture on volumetric properties namely specific gravity, void in mix (VIM), void mineral aggregate (VMA) and void filled bitumen (VFB) is studied. The results of volumetric evaluation indicated that waste PET and MBA could be incorporated in asphalt concrete mixture. After calculating specific gravity, VIM, VMA and VFB, a table was designed as a preliminary study based on Response Surface Methodology (RSM) that can be used as a basis of modelling for continuous improvement of asphalt concrete prepared with waste PET and MBA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.