The role of sulfite reductase (SiR) in assimilatory reduction of inorganic sulfate to sulfide has long been regarded as insignificant for control of flux in this pathway. Two independent Arabidopsis thaliana T-DNA insertion lines (sir1-1 and sir1-2), each with an insertion in the promoter region of SiR, were isolated. sir1-2 seedlings had 14% SiR transcript levels compared with the wild type and were early seedling lethal. sir1-1 seedlings had 44% SiR transcript levels and were viable but strongly retarded in growth. In mature leaves of sir1-1 plants, the levels of SiR transcript, protein, and enzymatic activity ranged between 17 and 28% compared with the wild type. The 28-fold decrease of incorporation of 35 S label into Cys, glutathione, and protein in sir1-1 showed that the decreased activity of SiR generated a severe bottleneck in the assimilatory sulfate reduction pathway. Root sulfate uptake was strongly enhanced, and steady state levels of most of the sulfur-related metabolites, as well as the expression of many primary metabolism genes, were changed in leaves of sir1-1. Hexose and starch contents were decreased, while free amino acids increased. Inorganic carbon, nitrogen, and sulfur composition was also severely altered, demonstrating strong perturbations in metabolism that differed markedly from known sulfate deficiency responses. The results support that SiR is the only gene with this function in the Arabidopsis genome, that optimal activity of SiR is essential for normal growth, and that its downregulation causes severe adaptive reactions of primary and secondary metabolism.
Selenium (Se)-fortified broccoli (Brassica oleracea var. italica) has been proposed as a functional food for cancer prevention, based on its high glucosinolate (GSL) content and capacity for Se accumulation. However, as selenate and sulphate share the initial assimilation route, Se fertilization could interfere with sulphur metabolism and plant growth. Consequently, GSL accumulation could be compromised. To evaluate these potentially adverse effects of Se fertilization, we performed a comprehensive study on sand-grown young broccoli plants (weekly selenate applications of 0.8 mmol plant -1 via the root) and field-grown adult broccoli plants during head formation (single foliar selenate application: 25.3 or 253 mmol plant -1 ). The results show that under these conditions, Se application does not affect plant growth, contents of cysteine, glutathione, total GSL, glucoraphanin (major aliphatic GSL) or the expression of BoMYB28 (encoding a functionally confirmed master regulator for aliphatic GSL biosynthesis). Conversely, due to the changed expression of sulphate transporters (BoSULTR1;1, 1;2, 2;1, and 2;2), sulphate and total S contents increased in the shoot of young plants while decreasing in the root. We conclude that broccoli can be fertilized with Se without reduction in GSL content, even with Se accumulation exceeding the level recommended for human consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.