In this paper, a blockchain-based secure data sharing mechanism is proposed for Vehicular Networks (VNs). Edge service providers are introduced along with ordinary nodes to efficiently manage service provisioning. The edge service providers are placed in the neighborhood of the ordinary nodes to ensure smooth communication between them. The huge amount of data generated by smart vehicles is stored in a distributed file storage system, known as Interplanetary File System (IPFS). It is used to tackle the issues related to data storage in centralized architectures, such as data tampering, lack of privacy, vulnerability to hackers, etc. Monetary incentives are given to edge vehicle nodes to motivate them for accurate and timely service provisioning to ordinary nodes. In response, ordinary nodes give reviews to the edge nodes against the services provided by them, which are further stored in a blockchain to ensure integrity, security and transparency. Smart contracts are used to automate the system processes without the inclusion of an intermediate party and to check the reviews given to the edge nodes. To optimize gas consumption and to enhance the system performance, a Proof of Authority (PoA) consensus mechanism is used to validate the transactions. Moreover, a caching system is introduced at the edge nodes to store frequently used services. Furthermore, both security and privacy are enhanced in the proposed system by incorporating a symmetric key cryptographic mechanism. A trust management mechanism is also proposed in this work to calculate the nodes’ reputation values based upon their trust values. These values determine the authenticity of the nodes involved in the network. Eventually, it is concluded from the simulation results that the proposed system is efficient for VNs.
In this work, Electric Vehicles (EVs) are charged using a new and improved charging mechanism called the Mobile-Vehicle-to-Vehicle (M2V) charging strategy. It is further compared with conventional Vehicle-to-Vehicle (V2V) and Grid-to-Vehicle (G2V) charging strategies. In the proposed work, the charging of vehicles is done in a Peer-to-Peer (P2P) manner; the vehicles are charged using Charging Stations (CSs) or Mobile Vehicles (MVs) in the absence of a central entity. CSs are fixed entities situated at certain locations and act as charge suppliers, whereas MVs act as prosumers, which have the capability of charging themselves and also other vehicles. In the proposed system, blockchain technology is used to tackle the issues related with existing systems, such as privacy, security, lack of trust, etc., and also to promote transparency, data immutability, and a tamper-proof nature. Moreover, to store the data related to traffic, roads, and weather conditions, a centralized entity, i.e., Transport System Information Unit (TSIU), is used. It helps in reducing the road congestion and avoids roadside accidents. In the TSIU, an Inter-Planetary File System (IPFS) is used to store the data in a secured manner after removing the data’s redundancy through data filtration. Furthermore, four different types of costs are calculated mathematically, which ultimately contribute towards calculating the total charging cost. The shortest distance between a vehicle and the charging entities is calculated using the Great-Circle Distance formula. Moving on, both the time taken to traverse this shortest distance and the time to charge the vehicles are calculated using real-time data of four EVs. Location privacy is also proposed in this work to provide privacy to vehicle users. The power flow and the related energy losses for the above-mentioned charging strategies are also discussed in this work. An incentive provisioning mechanism is also proposed on the basis of timely delivery of credible messages, which further promotes users’ participation. In the end, simulations are performed and results are obtained that prove the efficiency of the proposed work, as compared to conventional techniques, in minimizing the EVs’ charging cost, time, and distance.
Transmission rate is one of the contributing factors in the performance of wireless sensor networks. Congested network causes reduced network response time, queuing delay, and more packet loss. To address the issue of congestion, we have proposed transmission rate control methods. To avoid the congestion, we have adjusted the transmission rate at current node based on its traffic loading information. Multiclassification is done to control the congestion using an effective data science technique, namely support vector machine (SVM). In order to get less miss classification error, differential evolution (DE) and grey wolf optimization (GWO) algorithms are used to tune the SVM parameters. The comparative analysis has shown that the proposed approaches DE-SVM and GWO-SVM are more proficient than other classification techniques. Moreover, DE-SVM and GWO-SVM have outperformed the benchmark technique genetic algorithm-SVM by producing 3% and 1% less classification errors, respectively.For fault detection in wireless sensor networks, we have induced four types of faults in the sensor readings and detected the faults using the proposed enhanced random forest. We have made a comparative analysis with state of the art data science techniques based on two metrics, ie, detection accuracy and true positive rate. Enhanced random forest has detected the faults with 81% percent accuracy and outperformed the other classifiers in fault detection.
Internet of Things enabled Underwater Wireless Sensor Networks (IoT-UWSNs) are quite useful in monitoring different tasks including: from instrument monitoring to the climate recording and from pollution control to the prediction of natural disasters. However, there are some challenges, which affect the performance of a network, i.e., void hole occurrence, high Energy Consumption (EC) and low Packet Delivery Ratio (PDR). Therefore, in this work, two energy efficient routing protocols are proposed to maximize the PDR by minimizing the ratio of void hole occurrence. Scalability analysis of the proposed routing protocols is also performed. Additionally, feasible regions are computed to check the optimality of the proposed protocol in terms of EC. Furthermore, proposed protocols are compared with benchmark routing protocols in counterparts. Simulation results clearly show that proposed routing protocols achieved 80-81% higher PDR than GEographic and opportunistic routing with Depth Adjustment based topology control for communication Recovery (GEDAR) and Transmission Adjustment Neighbor-node Approaching Distinct Energy Efficient Mates (TA-NADEEM). Moreover, the ratio of void hole occurrence is minimized upto 30% approximately.INDEX TERMS Underwater wireless sensor networks, Internet of Things enabled harsh underwater WSNs, energy hole alleviation, enhanced geographic and opportunistic routing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.