Abstract-This paper discusses design synthesis of a permanent magnet brushless DC (PMBLDC) machine using a finite element (FE) model. This work differentiates itself from the past studies by following a synthesis approach, in which many designs that satisfy performance criteria are considered instead of a unique solution. The designer can later select a design, based on comparing parameters of the designs, which are critical to the application that the motor will be used. The presented approach makes it easier to define constraints for a design synthesis problem. A detailed description of the setting up of a FE based design synthesis problem, starting from the definition of design variables, FE model of the machine, how the design synthesis is carried out, and to, how a design is finalised from a set of designs that satisfy performance criteria, is included in this paper. The proposed synthesis program is demonstrated by designing a segmented axial torus PMBLDC motor for an electric two-wheeler.Index Terms-Axial flux machines, PMBLDC motor, finite element model, electrical machine design synthesis, segmented stator tooth, integer constrained genetic algorithm.
Abstract-In this work, the classical linear model of a permanent magnet synchronous motor (PMSM) is modified by adding d and q-axes harmonic inductances so that the modified model can consider non-linearities present in an interior permanent magnet (IPM) motor. Further, a method has been presented to assess the effect of saturation and cross-saturation on constant torque curves of PMSM. Two IPM motors with two different rotor topologies and different specifications are designed to evaluate the effect of saturation on synchronous and harmonic inductances, and on operating points of the machines.
The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires a different approach when deciding their operating point. In this work, laboratory measured BH curves of a ferrite magnet are used for estimating the possibility of demagnetization in a segmented axial torus (SAT) permanent magnet brushless DC (PMBLDC) motor. The BH characteristics for different temperatures have been used to study the performance variation of the ferrite magnet SAT PMBLDC motor with temperature. A detailed analysis is carried out to ensure that, the designed ferrite magnet motor is capable of delivering the specified torque throughout the operating speed, without any irreversible demagnetization of magnets. It has been shown that the ferrite magnet PMBLDC motor operation is influenced by the magnet temperature and the maximum motor speed for a given load torque decreases as the magnet temperature drops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.