Opiate withdrawal is associated with morphological changes of dopamine neurons in the ventral tegmental area and with reduction of spine density of second-order dendrites of medium size spiny neurons in the nucleus accumbens shell but not core. Withania somnifera has long been used in the Middle East, Africa, and India as a remedy for different conditions and diseases and a growing body of evidence points to its beneficial effects on a number of experimental models of neurological disorders. Recently, many studies focused on the potential neuritic regeneration and synaptic reconstruction properties of its methanolic extract and its constituents (withanolides). This study investigates whether morphine withdrawal-induced spine reduction in the nucleus accumbens is affected by the administration of a Withania somnifera extract. To this end, rats were chronically treated with Withania somnifera extract along with morphine or saline and, upon spontaneous (1 and 3 days) or pharmacologically precipitated withdrawal, their brains were fixed in Golgi-Cox stain for confocal microscopic examination. In a separate group of animals, Withania somnifera extract was administered during three days of spontaneous withdrawal. Withania somnifera extract treatment reduced the severity of the withdrawal syndrome when given during chronic morphine but not during withdrawal. In addition, treatment with Withania somnifera extract during chronic morphine, but not during withdrawal, fully prevented the reduction of spine density in the nucleus accumbens shell in spontaneous and pharmacologically precipitated morphine withdrawal. These results indicate that pretreatment with Withania somnifera extract protects from the structural changes induced by morphine withdrawal potentially providing beneficial effects on the consequences related to this condition.
Curcuma longa Linn. (Zingiberaceae) commonly known as turmeric has long been used for centuries as a spice and household remedy. The present study was carried out to assess the possible mutagenic potential and acute oral toxicity of polysaccharide extract of turmeric rhizome (NR-INF-02) using standard tests. The standard battery of in vitro genotoxicity tests, bacterial reverse mutation test (BRMT), chromosome aberration (CA), and micronucleus (MN) tests were employed to assess the possible mutagenic activity of NR-INF-02 (Turmacin). The results showed no mutagenic effect with NR-INF-02 up to a dose of 5000 µg/mL in BRMT. The results on CA and MN tests revealed the non clastogenic activity of NR-INF-02 in a dose range of 250.36 to 2500 µg/mL with and without metabolic activation (S9). In acute oral toxicity study, NR-INF-02 was found to be safe up to 5 g/kg body weight in Wistar rats. Overall, results indicated that polysaccharide extract of C. longa was found to be genotoxically safe and also exhibited maximum tolerable dose of more than 5 g/kg rat body weight.
Withania somnifera (L.) Dunal (Solanaceae) commonly known as ashwagandha, is an important plant in Ayurveda and is believed to increase longevity and vitality. The root is considered to be the medicinally important part of the plant as per classical texts and accordingly is the subject of most Pharmacopeial monographs. The aerial parts, being less expensive, are sometimes mixed with roots to prepare “standardized” extracts of W. somnifera, and in cases with false declaration of plant part used as roots on the certificate of analysis. The present study described a new, simple, accurate, and precise HPLC method for the simultaneous determination of flavonoid glycosides as unique constituents of the aerial parts, being absent in roots of the plant. The RSD for intra- and interday analyses was less than 2.5% and the recovery was 90–108%. The method was used to analyze samples of roots and aerial parts of the plant collected from India and Egypt. The samples of commercially available extracts of W. somnifera were also analyzed and many samples were found to contain flavonoid glycosides indicating a possible undeclared use of aerial parts in the extracts derived from roots in commercial practice.
Background Testing for pesticides levels in herbal products is an important aspect in determining product safety. Plants and its extracts are widely used as ingredients in botanical dietary supplements and traditional medicines. The extracts of plants, especially those prepared out of organic solvents are rich in secondary metabolites and pigments and adequate clean-up is required since the extracts completely dissolve in organic solvents. Objective The study aims at reporting a multi-residue analytical method for 126 different pesticides in raw material biomass as well as extracts of plants, which are widely used as ingredients in ayurvedic medicines as well as dietary supplements using LC-MSMS and GC-MSMS with a rugged sample preparation technique for accurate results. Method QuEChERS, GPC, GPC coupled with SPE and LLE coupled with SPE sample preparation methods were compared against each other for suitability to test pesticides in selected herbal raw materials and its alcoholic and aqueous extracts. The standard addition method was used for quantifying the level of pesticides below 10 μg/Kg. Results Single laboratory validation for sample preparation involving GPC and SPE resulted linearity in the range of 2.5–500 ng/mL, average intra-day and inter-day precision of 6.6% RSD, and average recovery (spiked at 10 μg/Kg) of 92% for all analytes tested. The method was repeatable with different analysts and days. Conclusions The sample preparation technique combining GPC and SPE as well as LLE and SPE were the most suitable for the selected herbal alcoholic extracts whereas any of the regular techniques involving LLE, SPE, and QuEChERS were suitable for raw material biomass as well as aqueous extracts. Highlights The method was found to be capable of determining selected pesticides in the selected matrices at 10 μg/Kg concentration. Provision of recycling solvents used in GPC+SPE method was adopted to make the method environmentally friendly.
An LC method was developed and validated in 2007 for analyzing Withania somnifera raw material (root) and dried extracts for withanolide content, including withanoside IV, withanoside V, withaferin A, 12-deoxywithastromonolide, withanolide A, and withanolide B. The method involved the extraction of the analytes with methanol, their subsequent filtration, and then analysis on a C18 column with an acetonitrile gradient and UV detection. Single-laboratory validation yielded linearity generally in the range of 20 to 200 μg/mL for each analyte, with a repeatability precision of RSD < 3% in most cases, and recovery in the range of 90 to 105%. These results compare well with the performance criteria recently detailed in AOAC Standard Method Performance Requirement 2015.007. The method was shown to be rugged with respect to different analysts, equipment, and days of analysis, and the sample solution was shown to be stable for 24 h at room temperature after extraction. The method was reviewed by the AOAC Expert Review Panel on Dietary Supplements (Set 2 Ingredients) and approved for First Action Official MethodSM status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.