One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.
Lysine-specific demethylase 5B (KDM5B/PLU1/JARID1B) is found to be overexpressed in numerous malignancies, including breast, lung, skin, liver, and prostate cancer. Identification of molecules targeting the KDM5B enzyme could be a potential lead in cancer research. Although many KDM5B inhibitors with promising outcomes have been developed so far, its further application in clinical practice is limited due to toxicity and lack of target specificity. Here, we summarize the significance of targeting KDM5B in anticancer therapy and report the molecular docking studies of some known anti-viral agents, decitabine, entecavir, abacavir, penciclovir, and 3-deazaneplanocin A in the catalytic domain JmjC of KDM5B. These studies show the repurposing potential of identified anti-viral agents in cancer therapy.
Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.
Objective:To elucidate the degree of genetic polymorphisms CYP2C19 (CYP2C19*2, CYP2C19*3) of key drug metabolizing enzymes on the antiplatelet effect of clopidogrel response in patients with acute ischemic stroke from Saudi Arabia.Methods:A case-control study carried out at Neurology Clinics at Asser Central Hospital, Abha, Kingdom of Saudi Arabia from October 2015 to January 2016 and included 25 stroke patients responding to clopidogrel therapy and 25 stroke patients non responding to clopidogrel monotherapy. After obtaining their informed consent, the blood samples were collected and genotyped for CYP2C19 polymorphisms by the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP Method). Allele frequencies were derived from genotypic data and platelet aggregation was measured using multiple electrode aggregometry on the multiplate analyser. Chi Square tests, p-values, odds ratio (OR) and corresponding confidence intervals were calculated for each polymorphism.Results:The CYP2C19*2 (681G>A) and CYP2C19*3 (636 G>A) polymorphism were seen to be in Hardy–Weinberg equilibrium and showed significant allelic and genotypic association between responders and non-responders to clopidogrel (p<0.01). The CYP2C19*2: allelic chi-square=21.49, p=0.000036, OR=5.52 (2.42-12.83); Genotypic Chi-square=10.27, p=0.001, OR=7.88 (1.78-9.73). The CYP2C19*3: Allelic chi-square=11.66, p=0.0006, OR=3.45 (1.57-7.70); genotypic chi-square=4.37, p=0.036, OR=3.69 (0.90-5.81). The variant allele (homozygous and homozygous Mutant) showed significant influence on platelet inhibition and the antiplatelet effect of clopidogrel in ischemic stroke.Conclusion:Our findings provide certain evidence on the genetic effect of CYP2C19 on clopidogrel responsiveness in stroke patients from Saudi Arabia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.