Summary• The seasonal timing of growth events is crucial to tree distribution and conservation. The seasonal growth cycle is strongly adapted to the local climate that is changing because of global warming. We studied bud set as one cornerstone of the seasonal growth cycle in an integrative approach.• Bud set was dissected at the phenotypic level into several components, and phenotypic components with most genetic variation were identified. While phenotypic variation resided in the timing of growth cessation, and even so more in the duration from growth cessation to bud set, the timing of growth cessation had a stronger genetic component in both natural and hybrid populations.• Quantitative trait loci (QTL) were identified for the most discriminative phenotypic bud-set components across four poplar pedigrees. The QTL from different pedigrees were recurrently detected in six regions of the poplar genome.• These regions of 1.83-4.25 Mbp in size, containing between 202 and 394 genes, form the basis for further molecular-genetic dissection of bud set.
Black poplar (Populus nigra L.) is a tree of ecological and economic interest. A better knowledge of P. nigra genome is needed for an effective protection and use of its genetic resources. The main objective of this study is the construction of a highly informative genetic map of P. nigra species including genes of adaptive and economic interest. Two genotypes originated from contrasted natural Italian populations were crossed to generate a F 1 mapping pedigree of 165 individuals. Amplification fragment length polymorphism (AFLP), simple sequence repeat (SSR), and single nucleotide polymorphism (SNP) markers were used to genotype 92 F 1 individuals, and the pseudo-test-cross strategy was applied for linkage analysis. The female parent map included 368 markers (274 AFLPs, 91 SSRs, and 3 SNPs) and spanned 2,104 cM with 20 linkage groups, and the male parent map, including 317 markers (205 AFLPs, 106 SSRs, 5 SNPs, and sex trait), spanned 2,453 cM with 23 main linkage groups. The sex, as morphological trait, was mapped on the linkage group XIX of the male parent map. The generated maps are among the most informative in SSRs when compared to the Populus maps published so far and allow a complete alignment with the 19 haploid chromosomes of Populus sequence genome. These genetic maps provide informative tools for a better understanding of P. nigra genome structure and genetic improvement of this ecologically and economically important European tree species.
White poplar (Populus alba L.) is native to Eurasia and is unexploited for its growth potential and stress-adaptive mechanisms. A better knowledge of its genome will allow for more effective protection and use of critical genetic resources. The main objective of this study was the construction of highly informative P. alba genetic maps. Two genotypes were selected from contrasting natural Italian populations and crossed to generate an F 1 mapping pedigree. Amplified fragment length polymorphism and simple sequence repeat markers were used to genotype 141 F 1 individuals. The pseudo-testcross strategy was applied for linkage analysis. The generated maps showed good overall colinearity to each other and allowed for a complete alignment with the 19 haploid chromosomes of the Populus genome sequence. The locus that determines sex as a morphological trait was positioned on a nonterminal position of LG XIX of the female parent map. Comparison among Populus species revealed differences in the location of the sex locus on LG XIX as well as inconsistencies in the heterogametic sex. The genetic analysis of the sex locus in P. alba provides insights into sex determination in the genus and is useful for the identification of sex-linked markers and the early assessment of plant gender. Furthermore, these genetic maps will greatly facilitate the study of the genomics of Populus and how it can be exploited in applied breeding programs. Communicated by S. González-Martínez Isabella Paolucci and Muriel Gaudet contributed equally to this research. Electronic supplementary material The online version of this article (
The increasing need for large-scale genotyping applications of single nucleotide polymorphisms (SNPs) in model and nonmodel organisms requires the development of low-cost technologies accessible to minimally equipped laboratories. The method presented here allows efficient discrimination of SNPs by allele-specific PCR in a single reaction with standard PCR conditions. A common reverse primer and two forward allele-specific primers with different tails amplify two allele-specific PCR products of different lengths, which are further separated by agarose gel electrophoresis. PCR specificity is improved by the introduction of a destabilizing mismatch within the 30 end of the allele-specific primers. This is a simple and inexpensive method for SNP detection that does not require PCR optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.