[1] An evaluation of the temperature and moisture profile retrievals from the Atmospheric Infrared Sounder (AIRS) data is performed using more than 2 years of collocated data sets. The Aqua-AIRS retrievals, global radiosonde (RAOB) measurements, forecast data from the National Center for Environmental Prediction Global Forecasting System (NCEP_GFS), the European Center for Medium Range Forecast (ECMWF), and the operational retrievals from the NOAA 16 satellite Advanced TIROS Operational Vertical Sounder (ATOVS) instrument are used in this validation. Using RAOB observations as the reference, bias and RMS differences are computed for ''sea,'' ''land,'' and ''all'' categories for the AIRS retrievals and other collocated data sets. The results of the intercomparison reveal that temperature and water vapor retrievals from the AIRS are in very good agreement with the RAOBs. The RMS difference for clear-only cases over ''sea'' and ''all'' categories is close to the expected goal accuracies, namely, 1°K in 1 km layers for the temperature and better than 15% in 2-km layers for the water vapor in the troposphere. The overall RMS difference for the cloud-cleared cases is also close to the expected product goal accuracy except for a slight degradation at the surface. When AIRS and ATOVS retrievals are compared with the RAOBs, the AIRS temperature retrievals show an improvement over ATOVS of at least 0.5°K for all the accepted cases. Both the ECMWF and the NCEP_GFS forecasts match the RAOB temperatures within 1°K and water vapor within 14%. With respect to biases, the AIRS final retrieval shows a larger bias with the RAOBs relative to ATOVS, NCEP_GFS, and ECMWF. The bias is highly influenced by a larger bias contribution from ''land'' samples and shows a month-to-month and annual variation that correlates with the CO 2 variations. This coupling suggests a need to include CO 2 and possibly other trace gas climatologies in the AIRS initial guess to partially mitigate the effects in the final physical retrieval.
The Atmospheric Infrared Sounder (AIRS), the hyperspectral infrared sounder on the NASA Aqua mission, both improves operational weather prediction and provides high-quality research data for climate studies. The Atmospheric Infrared Sounder (AIRS), and its two companion microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), form the integrated atmospheric sounding system flying on the Earth Observing System (EOS) Aqua spacecraft since its launch in May 2002.1 The primary scientific achievement of AIRS has been to improve weather prediction (Le Marshall et al. 2005a,b,c) and to study the water and energy cycle (Tian et al. 2006). AIRS also provides information on several greenhouse gases. The measurement goal of AIRS is the retrieval of temperature and precipitable-water vapor profiles with accuracies approaching those of conventional radiosondes. In the following text we use the terms AIRS and AIRS-AMSU-HSB interchangeably.1 The HSB ceased functioning after 5 February 2003. This did not have an impact on the accuracy, coverage, or resolution of the AIRS core data product, but its loss has had a significant impact on AIRS research products.A comprehensive set of articles on AIRS and AMSU design details, prelaunch calibration, and prelaunch retrieval performance expectations were published in a special issue of IEEE Transactions on Geoscience and Remote Sensing (2003, vol. 41, no. 2). This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
The Joint Polar Satellite System (JPSS) Cross‐track Infrared Microwave Sounder Suite (CrIMSS) is an advanced operational satellite sounding system concept comprised of the Cross‐track Infrared Sounder and the Advanced Technology Microwave Sounder. These are synergistically designed to retrieve key environmental data records (EDR), namely atmospheric vertical temperature, moisture, and pressure profiles. CrIMSS will serve as the low‐Earth orbit satellite sounding system, starting with the Suomi National Polar‐orbiting Partnership (S‐NPP) satellite and spanning the JPSS‐1 and JPSS‐2 satellites. This paper organizes the general paradigm for validation of atmospheric profile EDR retrieved from satellite nadir sounder systems (e.g., CrIMSS) as a synthesis of complementary methods and statistical assessment metrics. The validation methodology is ordered hierarchically to include global numerical model comparisons, satellite EDR intercomparisons, radiosonde matchup assessments (conventional, dedicated, and reference), and intensive campaign “dissections.” We develop and recommend the proper approach for computing profile statistics relative to correlative data derived from high‐resolution in situ data (viz., radiosondes) reduced to forward model layers. The standard statistical metrics used for EDR product assessments on “coarse layers” are defined along with an overview of water vapor weighting schemes and the use of averaging kernels. We then overview the application of the methodology to CrIMSS within the context of the JPSS calibration/validation program, with focus given to summarizing the core data sets to be used for validation of S‐NPP sounder EDR products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.