A highly sensitive and specific LC-MS/MS method was developed for simultaneous estimation of acetyl co-enzyme A (ACoA) and malonyl co-enzyme A (MCoA) in surrogate matrix using n-propionyl co-enzyme A as an internal standard (IS). LC-MS/MS was operated under the multiple reaction-monitoring mode using the electrospray ionization technique. Simple acidification followed by dilution using an assay buffer process was used to extract ACoA, MCoA and IS from surrogate matrix and tissue samples. The total run time was 3 min and the elution of both analytes (ACoA, MCoA) and IS occurred at 1.28 min; this was achieved with a mobile phase consisting of 5 mM ammonium formate (pH 7.5)-acetonitrile (30:70, v/v) delivered at a flow rate of 1 mL/min on a monolithic RP-18e column. A linear response function was established for the range of concentrations 1.09-2187 and 1.09-2193 ng/mL for ACoA and MCoA, respectively. The intra- and inter-day precision values for ACoA and MCoA met the acceptance as per FDA guidelines. ACoA and MCoA were stable in a battery of stability studies viz. bench-top, auto-sampler and long-term. The developed assay was used to quantitate ACoA and MCoA levels in various tissues of rat.
An LC-MS/MS-ESI method has been validated for simultaneous estimation of the three endocannabinoids; N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA) and palmitoylethanolamide (PEA), in surrogate matrix using AEA-d (4) as an internal standard with highest sensitivity over the existing methods. Simple precipitation was used to extract analytes and these were subsequently analyzed on a monolithic column. Linear response function was established over the concentration range 12.3 to 1225 pg/ml for AEA (r > 0.994); 0.70 to 641 ng/ml for OEA (r > 0.999) and 0.54 to 321 ng/ml (r > 0.998) for PEA. The intra- and inter-day precision values met the acceptance to criteria as per US FDA guidelines. Analytes were found to be stable in the battery of stability studies. The method was applied to quantify endogenous levels of analytes in rat plasma.
Most of the new chemical entities (NCEs) are poorly water-soluble and pose a challenge to developing an optimum solid oral dosage form. Oral route has been the major route of drug delivery for the treatment of various diseases. Delivery of poorly water--soluble molecules by oral route is difficult because approximately 40 % of drug compounds are limited to low aqueous solubility, which leads to restricted oral bioavailability, high intra-and inter-subject variability and lack of dose proportionality (1).To increase the oral bioavailability of poorly water-soluble compounds and eliminate the discussed drawbacks, various other formulation strategies have been adopted, including the use of cyclodextrins, nanoparticles, solid dispersions and permeation en- The aim of the study was to develop and evaluate a self--emulsifying drug delivery system (SEDDS) formulation to improve solubility and dissolution and to enhance systemic exposure of a BCS class II anthelmetic drug, albendazole (ABZ). In the present study, solubility of ABZ was determined in various oils, surfactants and co-surfactants to identify the microemulsion components. Pseudoternary phase diagrams were plotted to identify the microemulsification existence area. SEDDS formulation of ABZ was prepared using oil (Labrafac Lipopfile WL1349) and a surfactant/co-surfactant (Tween 80/PEG 400) mixture and was characterized by appropriate studies, viz., microemulsifying properties, droplet size measurement, in vitro dissolution, etc. Finally, PK of the ABZ SEDDS formulation was performed on rats in parallel with suspension formulation. It was concluded that the SEDDS formulation approach can be used to improve the dissolution and systemic exposure of poorly water-soluble drugs such as ABZ.
A highly sensitive and specific LC-MS/MS-ESI method was developed for simultaneous quantification of albenadazole (ABZ) and ricobendazole (RBZ) in rat plasma (50 μL) using phenacetin as an internal standard (IS). Simple protein precipitation was used to extract ABZ and RBZ from rat plasma. The chromatographic resolution of ABZ, RBZ and IS was achieved with a mobile phase consisting of 5 m m ammonium acetate (pH 6) and acetonitrile (20:80, v/v) at a flow rate of 1 mL/min on a Chromolith RP-18e column. The total chromatographic run time was 3.5 min and the elution of ABZ, RBZ and IS occurred at 1.66, 1.50 and 1.59 min, respectively. A linear response function was established for the ranges of concentrations 2.01-2007 and 6.02-6020 ng/mL for ABZ and RBZ, respectively. The intra- and inter-day precision values for ABZ and RBZ met the acceptance as per FDA guidelines. ABZ and RBZ were stable in battery of stability studies, viz. bench-top, auto-sampler and freeze-thaw cycles. The developed assay was applied to a pharmacokinetic study in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.