This study designed a system to determine outstanding employee selection using a Decision Support System (DSS) with the Analytical Hierarchy Process (AHP) method and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The purpose of this study is to analyze the accuracy in making decisions. The stages of this research are collecting employee data and criteria data, then weighting the criteria and assessment, after that the calculation uses the AHP and TOPSIS methods, and the last step is the analysis of the calculation results and the calculation of accuracy. The criteria used are attendance, years of service, permission, and discipline. Implementation for building applications using the PHP programming language and MySQL database. The results of the calculation of the accuracy obtained by the AHP method are 100%, as well as the TOPSIS method at 100%. The results of the AHP calculation show that the first rank results are obtained with a value of 0.02525, namely employees with code K8, while the results of the TOPSIS calculation show that the first rank results are obtained with a value of 0.955236913, namely employees with code K8. This shows that the two methods have the same results in determining the first rank of employees, however the TOPSIS method is better than AHP because the TOPSIS calculation process is carried out twice normalization so that it does not produce the same value.
<p>Penelitian ini merancang sistem untuk menentukan pemilihan karyawan terbaik menggunakan Sistem Pendukung Keputusan (SPK). Perhitungan sistem menggunakan metode SMART dan MAUT. SMART merupakan metode pengambilan keputusan multiatribut yang setiap alternatif terdiri dari sekumpulan atribut dan setiap atribut mempunyai nilai-nilai. Sedangkan MAUT didasarkan pada konsep dimana pembuat keputusan dapat menghitung utilitas dari setiap alternatif menggunakan fungsi MAUT dan dapat memilih alternatif dengan utilitas tertinggi. Metode SMART digunakan karena perhitungannya lebih sederhana dan memungkinkan penambahan serta pengurangan alternatif tanpa mempengaruhi perhitungan pembobotan mengingat jumlah karyawan bisa berkurang dan bertambah secara tidak teratur. Sedangkan metode MAUT digunakan karena memunculkan hasil urutan peringkat dimana akan muncul hasil nilai terbesar sampai nilai terkecil sehingga dapat diketahui karyawan dengan terbaik dengan nilai tertinggi. Sehingga dapat mengambil keputusan dengan efektif atas persoalan yang kompleks dengan menyederhanakan dan mempercepat proses pengambilan keputusan. Metode penelitian yang digunakan adalah metode pengembangan sistem model waterfall, metodologi ini terdapat tahapan-tahapan kegiatan yang harus dilakukan dalam merancang suatu sistem. Perhitungan menggunakan 30 sampel data karyawan dan empat kriteria penilaian. Empat kriteria tersebut adalah presensi dengan bobot 40, masa kerja dengan bobot 30, ijin dengan bobot 20, dan disiplin dengan bobot 10. Data karyawan yang digunakan adalah karyawan yang sama dalam kedua metode serta mempunyai data penilaian yang sama. Hasil perhitungan menggunakan SMART dan MAUT menunjukkan bahwa keduanya dapat diimplementasikan dan berfungsi dengan baik untuk menentukan karyawan terbaik. Dengan menggunakan data alternatif, nilai alternatif, dan bobot kriteria yang sama diperoleh hasil bahwa metode SMART memberikan hasil yang lebih baik dengan 22 peringkat, sedangkan metode MAUT menghasilkan 18 peringkat. Semakin banyak jumlah peringkat yang muncul maka semakin baik karena mampu meminimalisir nilai preferensi yang sama, sehingga perankingan alternatif dapat dilakukan dengan baik.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Judul2"><em>This study designed a system to determine the best employee selection using a Decision Support System (SPK). System calculations using the SMART and MAUT methods. SMART is a multi-attribute decision making method in which each alternative consists of a set of attributes and each attribute has values. Whereas MAUT is based on the concept where decision makers can calculate the utility of each alternative using the MAUT function and can choose alternatives with the highest utility. The SMART method is used because the calculation is simpler and allows the addition and subtraction of alternatives without affecting the weighting calculation given the number of employees can be reduced and increased irregularly. While the MAUT method is used because it raises the ranking order results in which the largest value will appear until the smallest value so that it can be known by the employee with the highest value. So that they can make decisions effectively on complex issues by simplifying and accelerating the decision making process. The research method used is the method of developing the system waterfall model, this methodology there are stages of activities that must be carried out in designing a system. The calculation uses 30 employee data samples and four assessment criteria. The four criteria are presence with a weight of 40, tenure with a weight of 30, permission with a weight of 20, and discipline with a weight of 10. Employee data used are the same employees in both methods and have the same assessment data. The results of calculations using SMART and MAUT indicate that both can be implemented and function properly to determine the best employees. By using alternative data, alternative values, and the same criteria weights, the results obtained that the SMART method gives better results with 22 ratings, while the MAUT method yields 18 ratings. The more number of ratings that appear, the better because it is able to minimize the same preference value, so that alternative ranking can be done well.</em></p><p><em><strong><br /></strong></em></p><p class="Abstrak"> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.