Cloud-based radio access networks (C-RAN) have been proposed as a cost-efficient way of deploying small cells. Unlike conventional RANs, a C-RAN decouples the baseband processing unit (BBU) from the remote radio head (RRH), allowing for centralized operation of BBUs and scalable deployment of light-weight RRHs as small cells. In this work, we argue that the intelligent configuration of the front-haul network between the BBUs and RRHs, is essential in delivering the performance and energy benefits to the RAN and the BBU pool, respectively. We propose FluidNet-a scalable, light-weight framework for realizing the full potential of C-RAN. FluidNet deploys a logically re-configurable front-haul to apply appropriate transmission strategies in different parts of the network and hence cater effectively to both heterogeneous user profiles and dynamic traffic load patterns. FluidNet's algorithms determine configurations that maximize the traffic demand satisfied on the RAN, while simultaneously optimizing the compute resource usage in the BBU pool. We prototype FluidNet on a 6 BBU, 6 RRH WiMAX C-RAN testbed. Prototype evaluations and large-scale simulations reveal that FluidNet's ability to re-configure its front-haul and tailor transmission strategies provides a 50% improvement in satisfying traffic demands, while reducing the compute resource usage in the BBU pool by 50% compared to baseline schemes.
Mobile operators are leveraging WiFi to relieve the pressure posed on their networks by the surging bandwidth demand of applications. However, operators often lack intelligent mechanisms to control the way users access their WiFi networks. This lack of sophisticated control creates poor network utilization, which in turn degrades the quality of experience (QoE). To meet user traffic demands, it is evident that operators need solutions that optimally balance user traffic across cellular and WiFi networks. Motivated by the lack of practical solutions in this space, we design and implement ATOM-an end-to-end system for adaptive traffic offloading for WiFi-LTE deployments. ATOM has two novel components: (i) A network interface selection algorithm that maps user traffic across WiFi and LTE to optimize user QoE and (ii) an interface switching service that seamlessly re-directs ongoing user sessions in a costeffective and standards-compatible manner. Our evaluations on a real LTE-WiFi testbed using YouTube traffic reveals that ATOM reduces video stalls by 3-4 times compared to naive solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.