Seiring perkembangan teknologi dilakukan otomatisasi deteksi kanker kulit melalui citra dermoscopy. Pengambilan informasi fitur citra dermoscopy terganggu dengan outlier dan overfitting, karena faktor jenis kulit, penyebaran kanker yang tidak merata atau kesalahan sampling. Penelitian ini mengusulkan deteksi kanker kulit melanoma dengan mengintegrasikan metode fuzzy K-Nearest Neighbour (FuzzykNN), Lp-norm dan Linear Discriminant Analysis (LDA) untuk mengurangi outlier dan overfitting. Masukan berupa citra warna RGB yang dinormalisasi menjadi RGBr. Reduksi dimensi dengan LDA menghasilkan fitur dengan nilai eigen paling menonjol. LDA pada penelitian ini menghasilkan dua fitur paling menonjol dari 141 jenis fitur, yaitu wilayah tumor dan minimum wilayah tumor channel R. Kemudian dilakukan klasifikasi FuzzykNN dan metode pengukur jarak Lp-norm. Penggunaan metode LDA dan Lp-norm dalam proses klasifikasi ini mengatasi terjadinya overfitting. Akurasi yang dihasilkan metode LDA-fuzzykNN Lp Norm, yaitu 72% saat masing-masing nilai p dan k = 25. Metode gabungan ini terbukti cukup baik dari pada metode yang dijalankan terpisah.
Program Bantuan Biaya Pendidikan Bidikmisi yaitu bantuan biaya pendidikan bagi calon mahasiswa tidak mampu secara ekonomi dan memiliki potensi akademik baik untuk menempuh pendidikan di perguruan tinggi pada program studi unggulan sampai lulus waktu. Selama ini proses penyeleksian mahasiswa baru jalur bidikmisi di Politeknik Negeri Malang masih dilakukan secara manual dengan menggunakan Microsoft Excel yang kemudian dilakukan proses sorting dengan satu persatu melihat persyaratan dan kriteria penilaian calon mahasiswa baru jalur bidikmisi, terdapat beberapa permasalahan dalam melakukan proses penyeleksian penentuan penerimaan mahasiswa baru bidikmisi, diantaranya membutuhkan ketelitian dan waktu yang sangat lama. Pada penelitian ini dibuat suatu sistem yang dapat membantu proses seleksi penentuan penerimaan mahasiswa baru jalur bidikmisi berdasarkan persyaratan dan kriteria yang telah ditentukan. Sistem ini menggunakan Metode Technique for Order Performance by Similarity to Ideal Solution (TOPSIS), ada 5 tahapan dalam metode TOPSIS yaitu matriks keputusan normalisasi, matriks keputusan normalisasi terbobot, matriks solusi ideal positif (A+) dan solusi ideal negatif (A-), menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif (D+) dan matriks solusi ideal negatif (D-), menghitung nilai preferensi. Sistem Pendukung Keputusan ini telah diuji dengan membandingkan pengambilan keputusan dengan SPK dan No-SPK. Berdasarkan hasil pengujian tersebut, dari kedua proses dan hasil yang dilakukan secara bersamaan secara real time dapat menghasilkan peningkatan pengambilan keputusan dengan selisih waktu yang lebih cepat dengan menggunakan SPK.
About 15% of sugarcane leaf is defective because of diseases, it reduces the quantity and quality of sugarcane production significantly. Early detection and estimation of plant disease is a way to control these diseases and minimize the severe infection. This paper proposes a model to identify the severity of certain spot disease which appear on leaves based on segmented spot. The segmented spot is obtained by thresholding a* component of L*a*b* color space. Diseases spots are extracted with maximum standard deviation of segmented spot that use for detection the type of disease using classification techniques. The classifier is a Support Vector Machine (SVM) which uses L*a*b* color space for its color features and Gray Level Co-Occurrence Matrix (GLCM) as its texture features. This proposed model capable to determine the types of spot diseases with accuracy of 80% and 5.73 error severity estimation average.
Malang Raya yang terdiri dari Kota Malang, Kabupaten Malang, dan Kota Batu merupakan salah satu tujuan wisata favorit di Jawa Timur. Banyaknya lokasi objek wisata yang menawarkan berbagai kelebihannya masing-masing. Hal ini seringkali menjadikan wisatawan lokal maupun non lokal kesulitan dalam memilih tujuan wisata, agar mampu memaksimalkan waktu kunjungan, biaya serta kepuasan yang diperoleh. Penelitian ini bertujuan untuk membangun sistem pendukung keputusan (SPK) untuk penentuan lokasi wisata dengan metode Moora. Metode ini akan memberikan pembobotan kriteria sesuai dengan kondisi/preferensi pengguna, dan kemudian melakukan pengolahan pada data. SPK yang dibangun mampu menghasilkan rekomendasi dengan memberikan perankingan lokasi wisata kepada pengguna sesuai preferensinya. Sistem yang dibangun diuji dengan menggunakan 5 alternatif lokasi objek wisata yang berada di Kota Batu dan 3 kriteria yang terdiri dari 1 kriteria cost dan 2 benefit. Eksperimen yang dilakukan berhasil memberikan perankingan yang berbeda terhadap 5 alternatif.
Each year the study program carries out activities that have been planned through departmental meetings. However, study program activities that are not on target will result in less accreditation scores. Accreditation is a government effort to guarantee the quality of educational institutions. The value of accreditation determines the main assets in the field of education, the quality of study programs and the feasibility of graduates. Therefore, this study tries to provide a ranking formula for study program activities based on the assessment of study program accreditation forms. The system is built using one of type multi-criteria decision making (MCDM), namely the Preference Selection Index (PSI). PSI method using statistical concepts until preference index as a reference for alternative ranking. This developed system can help the department to recommend the main activities that can be done to support the efforts of the study program in achieving optimal accreditation values. Finally, it was concluded that the PSI method is the right method for problems that require decision support with a large number of attributes, such as the criteria used in recommendations for study program activities that have been adapted to the study program accreditation form assessment matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.