The increasing evidence supports the fact that lactate in the tumor microenvironment (TME) plays a vital role in tumor proliferation, metastasis, and recurrence, which in turn is emerging as one of the most interesting molecular targets for tumor treatment. Here, hierarchical porous zeolitic imidazolate framework-8 (ZIF-8) as the nanocarrier is fabricated to simultaneously load lactate oxidase (LOD) and Fe3O4 nanoparticles (NPs), called LOD & Fe3O4@ZIF-8 NPs (LFZ NPs), for tumor therapy. On one hand, the sharp consumption of lactate in the TME by LOD will change the essential “soil” where tumor cells live so as to suppress tumor rapid growth. On the other hand, hydrogen peroxide (H2O2) is produced in the TME from the oxidation of lactate catalyzed by LOD and subsequently converted to highly toxic hydroxyl radicals (•OH) catalyzed by Fe3O4 NPs via Fenton-like reactions to kill tumor cells. Based on the endogenous catalysis, this dual-modal strategy of tumor therapy based on lactate is simple, safe, and effective, which deserves to be well concerned.
Nanozymes with peroxidase-like activity have great application potential in combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, the near-neutral pH and high glutathione (GSH) levels in the bacterial infection microenvironment severely limit their applications in antibacterial therapy. In this work, a metal−organic framework (MOF)-based cascade catalytic glutathione-depleting system named MnFe 2 O 4 @MIL/Au&GOx (MMAG) was constructed. The MMAG cascade-catalyzed glucose to provide H + and produces a large amount of toxic reactive oxygen species. In addition, MMAG consumed GSH, which can result in bacterial death more easily. Systematic antibacterial experiments illustrated that MMAG has superior antibacterial effects on both Gram-positive bacteria and Gram-negative bacteria.
Electrochemical biosensors have been widely applied in the development of metabolite detection systems for disease management. However, conventional intravenous and fingertip blood tests are invasive and cannot track dynamic trends of multiple metabolites. Among various body fluids, saliva can be easily accessed and is regarded as a promising candidate for non-invasive metabolite detection. Recent works on the development of electrochemical biosensors for monitoring salivary metabolites have demonstrated high sensitivity and wide linear range. However, most of this research has been focused on salivary detection of a single metabolite. Here, we present a dual-channel electrochemical biosensor for simultaneous detection of lactate and glucose in saliva based on a flexible screen-printed electrode with two working electrodes. The sensitivities of glucose and lactate channels were 18.7 μA/(mM·cm2) and 21.8 μA/(mM·cm2), respectively. The dual-channel biosensor exhibited wide linear ranges of 0–1500 μM for the glucose channel and 0–2000 μM for the lactate channel and the cross-talk between the two detection channels was negligible, which made it adequately suitable for sensing low-level salivary metabolites. Such attractive characteristics demonstrate the potential of this dual-analyte biosensor in the development of wearable devices for monitoring disease progression and fitness.
Biofilm formation by Pseudomonas aeruginosa contributes to its survival on surfaces and represents a major clinical threat because of the increased tolerance of biofilms to disinfecting agents. This study aimed to investigate the efficacy of 405-nm light-emitting diode (LED) illumination in eliminating P. aeruginosa biofilms formed on stainless steel coupons under different temperatures. Time-dependent killing assays using planktonic and biofilm cells were used to determine the antimicrobial and antibiofilm activities of LED illumination. We also evaluated the effects of LED illumination on the disinfectant susceptibility, biofilm structure, extracellular polymeric substance (EPS) structure and composition, and biofilm-related gene expression of P. aeruginosa biofilm cells. Results showed that the abundance of planktonic P. aeruginosa cells was reduced by 0.88, 0.53, and 0.85 log CFU/ml following LED treatment for 2 h compared with untreated controls at 4, 10, and 25°C, respectively. For cells in biofilms, significant reductions (1.73, 1.59, and 1.68 log CFU/cm2) were observed following LED illumination for 2 h at 4, 10, and 25°C, respectively. Moreover, illuminated P. aeruginosa biofilm cells were more sensitive to benzalkonium chloride or chlorhexidine than untreated cells. Scanning electron microscopy and confocal laser scanning microscopic observation indicated that both the biofilm structure and EPS structure were disrupted by LED illumination. Further, reverse transcription-quantitative PCR revealed that LED illumination downregulated the transcription of several genes associated with biofilm formation. These findings suggest that LED illumination has the potential to be developed as an alternative method for prevention and control of P. aeruginosa biofilm contamination. IMPORTANCE Pseudomonas aeruginosa can form biofilms on medical implants, industrial equipment, and domestic surfaces, contributing to high morbidity and mortality rates. This study examined the antibiofilm activity of 405-nm light-emitting diode (LED) illumination against mature biofilms formed on stainless steel coupons. We found that the disinfectant susceptibility, biofilm structure, and extracellular polymeric substance structure and composition were disrupted by LED illumination. We then investigated the transcription of several critical P. aeruginosa biofilm-related genes and analyzed the effect of illumination temperature on the above characteristics. Our results confirmed that LED illumination could be developed into an effective and safe method to counter P. aeruginosa biofilm contamination. Further research will be focused on the efficacy and application of LED illumination for elimination of complicated biofilms in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.