Osteoclasts are multinucleated cells that are formed by the fusion of mononuclear osteoclasts, which is an essential process in bone resorption leading to bone remodeling. Herein we show that GM-CSF promoted the fusion of prefusion osteoclasts (pOCs). The expression of GM-CSF receptor-α was significantly up-regulated at the fusion stage of pOCs induced by RANKL. GM-CSF induced the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which was mediated by inducing NFATc1 via induction of c-Fos. The expression of c-Fos and NFATc1 was regulated by the ERK signaling pathway. Inhibition of ERK and NFATc1 suppressed the expression of DC-STAMP and led to the fusion inhibition of pOC. However, retrovirus-mediated expression of NFATc1 in pOCs rescued the defect in pOC fusion, despite the presence of U0126 and cyclosporin A. GM-CSF-stimulated pOCs had an intact actin ring and could resorb bone. Importantly, pOCs infected with constitutively active MEK adenovirus expressed c-Fos and NFATc1, followed by the binding of NFATc1 to the DC-STAMP promoter, which enables its transcription and expression. Constitutively active MEK-infected pOCs are able to resorb bone by undergoing cell-cell fusion. Taken together, our results demonstrated that GM-CSF induced fusion of pOCs to form multinucleated osteoclasts, making the osteoclast capable of bone resorption.
BackgroundEven though osteoarthritis (OA) is the most common musculoskeletal dysfunction, there are no effective pharmacological treatments to treat OA due to lack of understanding in OA pathology. To better understand the mechanism in OA pathogenesis and investigate its effective target, we analyzed miRNA profiles during OA pathogenesis and verify the role and its functional targets of miR-488.ResultsHuman articular chondrocytes were obtained from cartilage of OA patients undergoing knee replacement surgery and biopsy samples of normal cartilage and the expression profile of miRNA was analyzed. From expression profile, most potent miR was selected and its target and functional role in OA pathogenesis were investigated using target validation system and OA animal model system. Among miRNAs tested, miR-488 was significantly decreased in OA chondrocytes Furthermore, we found that exposure of IL-1β was also suppressed whereas exposure of TGF-β3 induced the induction of miR-488 in human articular chondrocytes isolated from biopsy samples of normal cartilages. Target validation study showed that miR-488 targets ZIP8 and suppression of ZIP8 in OA animal model showed the reduced cartilage degradation. Target validation study showed that miR-488 targets ZIP8 and suppression of ZIP8 in OA animal model showed the reduced cartilage degradation.ConclusionsmiR-488 acts as a positive role for chondrocyte differentiation/cartilage development by inhibiting MMP-13 activity through targeting ZIP-8.
Bone remodeling, a physiological process in which new bone is formed by osteoblasts and the preexisting bone matrix is resorbed by osteoclasts, is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this process can cause various pathological conditions, including osteoporosis. Emodin, a naturally occurring anthraquinone derivative found in Asian herbal medicines, has numerous beneficial pharmacologic effects, including anticancer and antidiabetic activities. However, the effect of emodin on the regulation of osteoblast and osteoclast activity has not yet been investigated. We show here that emodin is a potential target for osteoporosis therapeutics, as treatment with this agent enhances osteoblast differentiation and bone growth and suppresses osteoclast differentiation and bone resorption. In this study, emodin suppressed receptor activator of nuclear factor-kB (NF-kB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) and the bone-resorbing activity of mature osteoclasts by inhibiting RANKL-induced NF-kB, c-Fos, and NFATc1 expression. Emodin also increased ALP, Alizarin Red-mineralization activity, and the expression of osteoblastogenic gene markers, such as Runx2, osteocalcin (OCN), and ALP in mouse calvarial primary osteoblasts, as well as activated the p38-Runx2 pathway, which enhanced osteoblast differentiation. Moreover, mice treated with emodin showed marked attenuation of lipopolysaccharide (LPS)-induced bone erosion and increased bone-forming activity in a mouse calvarial bone formation model based on micro-computed tomography and histologic analysis of femurs. Our findings reveal a novel function for emodin in bone remodeling, and highlight its potential for use as a therapeutic agent in the treatment of osteoporosis that promotes bone anabolic activity and inhibits osteoclast differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.