We demonstrate the design and implementation of hybrid optical-electrical probes (`optrodes') for high resolution electrophysiology and optogenetic stimulation of neurons in multiple brain areas. Our 64-channel implantable optrodes are minimally invasive (50 μm × 20 μm) and span 1~2 mm. To minimize tethering forces on the brain tissue a monolithic high-density flexible cable (6 μm thin) connects the probe to a lightweight headstage (1.3 gr, 256 channel configuration) designed for awake, freely-behaving small animals. A polymer-based multi-channel photonic light delivery system is integrated on shank in a separate layer, providing local optogenetic stimulation of the neural population adjacent to the probe. The entire manufacturing process, including the nanofabrication of the optrodes, post-fabrication assembly, and surgical implantation procedures are designed to be scalable, high-yield, and high-throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.