Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.
The draft genome of Citrobacter sp. CtB7.12, isolated from termite gut, is presented here. This organism has been reported as a cellulolytic bacterium, which is biotechnologically important because it can be used as a gene donor for the ethanol and biofuel industries.
Trabulsiella odontotermitis represents a novel species in the genus Trabulsiella with no complete genome reported yet. Here, we describe the draft genome sequences of five isolates from termites present in the north of Mexico, which have an interesting pool of genes related to cellulose degradation with biotechnological application.
This study analyzed the effects of different dietary doses of encapsulated propyl propane thiosulfonate (Pe-PTSO) on the apparent ileal digestibility (AID) of nutrients and productive performance in broilers. A total of 100 one-day-old Cobb 500 were housed in battery cages for 20 days. At 10 days of age, the birds were assigned to one of five diets: negative control (P0), 250 mg/kg of Pe-PTSO (P250), 500 mg/kg of Pe-PTSO (P500), 750 mg/kg of Pe-PTSO (P750), and positive control, nicarbazin–narasin (ION). Titanium dioxide was the external marker, which was added to the diets from day 17 to 20. In the birds fed the P250 diet, there was a significant difference (p ≤ 0.05) in the AID values for amino acids and energy compared to those that consumed the P0 diet. Furthermore, the P250 diet significantly increased (p ≤ 0.05) the average daily weight gain compared to the P0 diet. No significant differences were observed between treatments in average daily feed intake and feed conversion ratio. In summary, the inclusion of 250 mg of encapsulated PTSO per kg in broiler chickens diet improved the digestibility of amino acids and energy, as well as weight gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.