Biogenic amines (BAs) have been reported in a variety of foods, such as fish, meat, cheese, and wines. The formation of BAs in food by the microbial decarboxylation of amino acids can result in human allergic reactions, characterized by difficulty in breathing, rash, vomiting, and hypertension. Control measures to prevent biogenic amine formation in foods and/or reduce their levels should be considered. Therefore, monitoring of BAs in food samples with the application of analytical techniques is of high importance. This review is based on literature data from 2010 until today and refers to food samples and alcoholic beverages. The rationale of this study is to provide data for the occurrence of BAs in food and beverages samples and a comparison of the analytical techniques and challenges in liquid and solid matrices. Importantly, BAs can be used as future markers for quality and freshness of the food products and alcoholic beverages.
A direct method based on immersion solid phase microextraction (DI-SPME) gas chromatography mass-spectrometry (GC-MS) was optimized and validated for the determination of 16 biogenic amines in Polish wines. In the analysis two internal standards were used: 1,7-diaminoheptane and bis-3-aminopropylamine. The method allows for simultaneous extraction and derivatization, providing a simple and fast mode of extraction and enrichment. Different parameters which affect the extraction procedure were studied and optimized including ionic strength (0-25%), fiber materials (PDMS/DVB, PDMS/DVD + OC, Polyacrylate, Carboxen/PDMS and DVB/CAR/PDMS) and timings of the extraction, derivatization and desorption processes. Validation studies confirmed the linearity, sensitivity, precision and accuracy of the method. The method was successfully applied to the analysis of 44 wine samples originating from several regions of Poland and 3 wine samples from other countries. Analysis showed that many of the samples contained all examined biogenic amines. The method, assessed using an Eco-Scale tool with satisfactory results, was found to be green in terms of hazardous chemicals and solvents usage, energy consumption and production of waste. Therefore the proposed method can be safely used in the wine industry for routine analysis of BAs in wine samples with a minimal detrimental impact on human health and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.