Inositol auxotrophy (Ino − phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino − phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino − mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.
It is well known that tumor-surrounding stromal tissues support tumor development through secreting soluble factors such as various cytokines, chemokines, and growth factors. It has also been suggested that tumor-associated fibroblast and immune cells have a high expression of cyclooxygenase-2 (COX-2) and produce and secrete several prostaglandins (PGs) to adjacent cancer tissues. From these findings, we assumed that COX-2 inhibition might have an anticancer effect on cancer cells even without COX-2 expression in COX-2-dependent mechanisms through blocking the effect of stroma-derived PGs. Here, because of the complex involvement of various factors in vivo, we investigated this possibility with an in vivo-mimicking model using a Transwell system. To test our hypothesis, we used COX-2-transfected cell lines as stromal cells in our model. When we cocultured cancer cells (LS174T cells without COX-2 expression) with COX-2-high stromal cells in the Transwell membrane system, we observed that the proliferation of cancer cells was promoted and vascular endothelial growth factor synthesis was up-regulated significantly. These effects were blocked completely by COX-2 inhibitors and phosphoinositide-3-kinase inhibitors and partially by the PG E 2 receptor 4 antagonist. Even if some cancer cells did not express COX-2, they were found to have expression of PG receptors and PG-related downstream signaling molecules associated with cell viability. Our observation suggests that these cells can be influenced by PGs derived from stromal tissues. These findings also suggest that COX-2 inhibitors can be used to control the interaction between cancer and surrounding stromal tissues and suppress the proliferation of cancer cells regardless of the expression of COX-2 in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.