24 Постановка задачиКак известно, задача построения математической модели любого объекта управления обычно делится на две части: 1) синтез структуры математической модели; 2) определение параметров (коэффициентов) математической модели. Каждая из этих подзадач решается неоднозначно, так как, в частности, принятые допущения, а также физические эффекты и явления, учтенные при структурном синтезе математической мо-дели, могут быть неодинаковыми, следовательно, в итоге получаются и различные структуры моделей. Критерии количественной близости модели и объекта также могут быть разными, что приводит к разным численным значениям параметров модели одной и той же структуры.В работах [1-3] определена и обоснована структура математической модели теплового ре-жима зданий (ТРЗ). Основным использованным при этом допущением является предположение о квазистационарности процесса переноса теплоты через толщу наружного ограждения. Однако на самом деле температурное поле в ограждении обычно является нестационарным, поэтому инте-ресно было бы выяснить, какая математическая модель теплового режима здания получится в этом случае, т. е. в случае учета нестационарности реального температурного поля. Данная зада-ча и рассматривается в настоящей работе. Синтез структуры модели ТРЗУправление в технических системах УДК 697.34:62-52
To ensure safety and improve the efficiency of flight missions, reliable information about the altitude and speed parameters of the aircraft (AC) is required. Therefore, improving the algorithm for calculating the vertical speed used as part of the algorithmic support for air signal systems (ASS) is a very urgent task. Purpose of the study. The problem of calculating the vertical speed of an aircraft in the ASS is considered. Materials and methods. The analysis of literature data on the use of numerical differentiation procedures to solve this problem is carried out, it is noted that the methods used are based on different ideas and approaches. It is indicated that two-point algorithms are significantly worse than multi-point algorithms in terms of the achieved accuracy, howe¬ver, they are characterized by significant simplicity and speed. Various versions of multipoint algorithms are used, differing in complexity, the amount of information used, and the accuracy achieved. The features of the regularizing algorithms, which are essentially filters of a low-frequency useful signal, suppressing the high-frequency component of the error in measuring the altitude signal or, what is the same, atmospheric pressure, are noted. The data on systems with hardware differentiation of the height signal are given. Results. A fairly simple four-point algorithm for numerical differen¬tiation is proposed and substantiated. Due to the averaging of both the measurement results themselves and the estimates of the derivatives, significant filtering of noise is realized, which is an important advantage of the algorithm. For greater accuracy in estimating the vertical speed, it is envisa¬ged to include a preliminary filtering algorithm in the experimental data processing scheme. The filtering algorithm is found from the solution of the optimization problem; it is shown that this algorithm is structurally similar to the filtering algorithms constructed according to the well-known approaches of R. Kalman. The results of computational experiments on the study of the features and characteristics of the proposed algorithms are presented, illustrating their advantages, performance and the possibility of further use in ASS. It is shown that preliminary filtering significantly increases the accuracy of the vertical velocity estimation. Conclusion. The developed algorithms can be used to improve the algorithmic support of the ASS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.