Chemically ordered L10-type FeNi, also known as tetrataenite, is under investigation as a rare-earth-free advanced permanent magnet. Correlations between crystal structure, microstructure and magnetic properties of naturally occurring tetrataenite with a slightly Fe-rich composition (~ Fe55Ni44) obtained from the meteorite NWA 6259 are reported and augmented with computationally derived results. The tetrataenite microstructure exhibits three mutually orthogonal crystallographic variants of the L10 structure that reduce its remanence; nonetheless, even in its highly unoptimized state tetrataenite provides a room-temperature coercivity of 95.5 kA m(-1) (1200 Oe), a Curie temperature of at least 830 K and a largely temperature-independent anisotropy that preliminarily point to a theoretical magnetic energy product exceeding (BH)max = 335 kJ m(-3) (42 MG Oe) and approaching those found in today's best rare-earth-based magnets.
a b s t r a c tSynthesis of a new tetragonal phase at the equiatomic composition in the archetypal binary Fe-Ni phase diagram is reported. This new phase is proposed as a transitional phase linking cubic FeNi with the chemically ordered tetragonal L1 0 FeNi compound, tetrataenite, of interest as a new advanced permanent magnetic material. This new tetragonal phase was created in a selection of nominally equiatomic FeNi alloys, made either from natural Fe and Ni or from natural Fe combined with the 62 Ni isotope, via application of high-strain processing methods followed by an annealing protocol. High-resolution neutron diffraction affirms that all unprocessed samples adopt the A1-type cubic structure (space group Fm3m) while all fully processed samples adopt the chemically disordered A6-type tetragonal structure (space group I4/mmm). Magnetic characterization documents a decrease in the initial magnetic susceptibility of deformed samples after annealing, evidencing a processing-induced increase in magnetic anisotropy that may be entirely accounted for by the measured tetragonal distortion. It is proposed that this new phase is a precursor to the formation of tetrataenite (L1 0 FeNi, space group P4/mmm), a meteoritic mineral of high magnetization and appreciable magnetocrystalline anisotropy that requires extraordinarily long cooling periods to form in nature. These results furnish new fundamental information as well as engineering insight for terrestrial synthesis of tetrataenite on industrial timescales, with high relevance for the creation of next-generation permanent magnets comprised entirely of easily accessible, earth-abundant elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.