This paper focuses on the development of patterned graphene/substrate by means of green nanosecond pulse laser irradiation. Monolayer graphene samples supported on a Si/SiO 2 substrate were patterned using 532 nm laser irradiation under fluence conditions ranging from 31 mJ/cm 2 and to 4240 mJ/cm 2. Raman spectroscopy was used to investigate the effect of laser irradiation on the graphene. It was found that at 356 mJ/cm 2 selective ablation of the graphene occurs. However, at fluence values above 1030 mJ/cm 2 (when damage to the substrate is observed) no ablation of the graphene takes place. In contrast, its graphenic structure was found to have been modified. Only at fluence values where the ablation of the substrate occurs, is graphene eliminated in an area almost equivalent to that of the ablated substrate. In this case, additional damage to the graphene sheet edges is produced. The increment in the number of oxygenated functional groups in these regions, as measured by XPS spectroscopy, suggests that this damage is probably caused by thermal phenomena during the ablation of the substrate.
This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.