Abstract. The FLASH EU funded project aims to observe, analyze and model lightning activity in thunderstorms for use in short term forecasting of flash floods in the Mediterranean region. Two new indices, aimed to assess the potential for heavy precipitation and flash-floods, are proposed and evaluated. The first is a lightning index – the MKI, which is a modified version of the KI-index. The applied index gives more weight to the lower- and mid-level relative humidity. The second is a new rain index, the RDI, which is the integrated product of specific humidity and vertical velocity. With the aim to contribute to the aforementioned objectives, 3 flash flood events, two in Israel and one in Greece are analyzed in the present study, using the 2 proposed indices. The NCEP/NCAR reanalysis database, of 2.5°×2.5° resolution, failed to resolve the meso-scale features of the observed flash flood events. Therefore, the ECWMF database, of 0.5°×0.5° resolution, was used for calculating and displaying the two indices. Comparison between the observed rain and lightning and the respective indices for the two pieces of data was performed for the flash flood events. The results show good concordance of both indices with timing and spatial distribution in 2 of them, while in one of them is displaced by more than 50 km. The good agreement in locating the maximum between the MKI and RDI suggests that the proposed indices are good predictors for both intense lightning activity and torrential rain and consequently, for potential flash floods.
Abstract. Analysis of extreme hydrometeorological events is important for characterizing and better understanding the meteorological conditions that can generate severe rainstorms and the consequent catastrophic flooding. According to several studies (e.g., Alpert et al., 2004; Wittenberg et al., 2007), the occurrence of such extreme events is increasing over the eastern Mediterranean although total rain amounts are generally decreasing. The current study presents an analysis of an extreme event utilizing different methodologies: (a) synoptic maps and high resolution satellite imagery for atmospheric condition analysis; (b) rainfall analysis by rain gauges data; (c) meteorological radar rainfall calibration and analysis; (d) field measurements for estimating maximum peak discharges; and, (e) high resolution aerial photographs together with field surveying for quantifying the geomorphic impacts. The unusual storm occurred over Israel between 30 March and 2 April, 2006. Heavy rainfall produced more than 100 mm in some locations in only few hours and more than 200 mm in the major core area. Extreme rain intensities with recurrence intervals of more than 100 years were found for durations of 1 h and more as well as for the daily rain depth values. In the most severely affected area, Wadi Ara, extreme flash floods caused damages and casualties. Specific peak discharges were as high as 10–30 m³/s/km² for catchments of the size of 1–10 km², values larger than any recorded floods in similar climatic regions in Israel.
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms' development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.