Aim. To study the chemical composition, sugar specificity and physicochemical properties of the extracellular lectin isolated from Bacillus subtilis ІМV В-7724. Methods. Biochemical, spectrophotometric, immunological and cultural methods were used to assess the physicochemical and a number of biological properties of lectin isolated from the culture fluid of bacteria B. subtilis ІМV В-7724. Molecular weight of the lectin was estimated in polyacrylamide gel electrophoresis. Analysis of the elemental composition was done using Perkin-Elmer 2400 CHNS analyzer. Temperature and pH stability of lectin were examined based on residual hemagglutination activity of the lectin. Cytotoxic activity was determined by the MTT-assay. The statistical analysis was made using Student’s t-test. Results. B. subtilis IMV B-7724 lectin is a glycoprotein (protein – 86.0%, carbohydrates – 7.0%) with molecular weight of 18–20 kDa (major). Analysis of the elemental composition revealed that it contains 34.00% of carbon, 7.04% of hydrogen, 16.61% of nitrogen, 42.35% of oxygen. Amino acid composition analysis determined that it is rich in leucine, tyrosine and phenylalanine. The lectin exhibited high sugar-binding specificity toward N-acetylneuraminic and N-glycolylneuraminic acids (minimal inhibitory concentration – 0.3 mM for both sugars). The lectin is heat and acid stable, has long shelf life. Conclusions. These results provide the rationale to pursue further investigation for possible ways and modes of B. subtilis IMB B-7724 lectin application in clinical settings.
Abstract. Immunotherapy in the form of anticancer vaccination relies on the mobilization of the patient's immune system against specific cancer antigens. Instead of focusing on an autologous cell lysate, which is not always available in clinical practice, the present study investigates vaccines utilizing xenogeneic foetal tissue that are rich in oncofoetal antigens. Lewis lung carcinoma (LLC)-challenged C57BL/6 mice were treated with either a xenogeneic vaccine made from chicken whole embryo, or a xenogeneic vaccine made from rat embryonic brain tissue, supplemented with a Bacillus subtilis protein fraction as an adjuvant. Median and overall survival, size of metastatic foci in lung tissue and levels of circulating CD8a + T cells were evaluated and compared with untreated control mice. Following primary tumour removal, a course of three subcutaneous vaccinations with xenogeneic chicken embryo vaccine led to significant increase in overall survival rate (100% after 70 days of follow-up vs. 40% in untreated control mice), significant increase in circulating CD8a + T cells (18.18 vs. 12.6% in untreated control mice), and a significant decrease in the area and incidence of metastasis foci. The xenogeneic rat brain tissue-based vaccine did not improve any of the investigated parameters, despite promising reports in other models. We hypothesize that the proper selection of antigen source (tissue) can constitute an effective immunotherapeutic product.
Aim: To investigate the effect of chicken embryo proteins (CEP) as a prototype of xenogeneic vaccine on immune reactions in mice immunized after Lewis lung carcinoma (LLC) surgical removal. Materials and Methods: C57Bl male mice were immunized on days 1, 8, and 15 after surgical removal of LLC. The immune response was assessed on days 7, 14, 21 and 28 after tumor resection. Cytotoxic activity of natural killer cells (NK) and cytotoxic T-lymphocytes as well as antibody dependent cellular cytotoxicity was estimated in MTT-assay; specific antibodies were detected in ELISA; lymphocyte proliferation was tested in reaction of in vitro blast transformation. Results: None of the immunized mice developed LLC metastases. Immunization with CEP seems to prevent the potential decrease in NK cell cytotoxic activity and spontaneous blast transformation activity of lymphocytes following the surgically induced stress. Further research on improving immunization schedule and elucidating the mechanisms of NK modulation with CEP is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.