The influence of the microstructural transformations upon heat treatments on the wear resistance of Fe-W coatings is studied. The coatings are electrodeposited from a glycolate-citrate plating bath with 24 at.% of W, and the wear resistance is investigated under dry friction conditions using ball-on-disc sliding tests. The samples were annealed in Ar atmosphere at different temperatures up to 800 °C. The microstructural transformations were studied by means of X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Electron Backscattered Diffraction (EBSD) technique. Except for the coating annealed at 800 °C, all the tested coatings suffered severe tribo-oxidation which resulted in the formation of deep cracks, i.e., ~15 μm in depth, within the wear track. The precipitation of the secondary phases, i.e., Fe2W and FeWO4, on the surface of the sample annealed at 800 °C increased the resistance to tribo-oxidation leading to wear tracks with an average depth of ~3 μm. Hence, the Fe-W coating annealed at 800 °C was characterized with a higher wear resistance resulting in a wear rate comparable to electrodeposited hard chromium coatings, i.e., 3 and 4 × 10−6 mm3/N m, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.