[1] EGM2008 is a spherical harmonic model of the Earth's gravitational potential, developed by a least squares combination of the ITG-GRACE03S gravitational model and its associated error covariance matrix, with the gravitational information obtained from a global set of area-mean free-air gravity anomalies defined on a 5 arc-minute equiangular grid. This grid was formed by merging terrestrial, altimetry-derived, and airborne gravity data. Over areas where only lower resolution gravity data were available, their spectral content was supplemented with gravitational information implied by the topography. EGM2008 is complete to degree and order 2159, and contains additional coefficients up to degree 2190 and order 2159. Over areas covered with high quality gravity data, the discrepancies between EGM2008 geoid undulations and independent GPS/ Leveling values are on the order of AE5 to AE10 cm. EGM2008 vertical deflections over USA and Australia are within AE1.1 to AE1.3 arc-seconds of independent astrogeodetic values. These results indicate that EGM2008 performs comparably with contemporary detailed regional geoid models. EGM2008 performs equally well with other GRACE-based gravitational models in orbit computations. Over EGM96, EGM2008 represents improvement by a factor of six in resolution, and by factors of three to six in accuracy, depending on gravitational quantity and geographic area. EGM2008 represents a milestone and a new paradigm in global gravity field modeling, by demonstrating for the first time ever, that given accurate and detailed gravimetric data, a single global model may satisfy the requirements of a very wide range of applications.
An improved Earth geopotential model, complete to spherical harmonic degree and order 70, has been determined by combining the Joint Gravity Model 1 (JGM 1) geopotential coefficients, and their associated error covariance, with new information from SLR, DORIS, and GPS tracking of TOPEX/Poseidon, laser tracking of LAGEOS 1, LAGEOS 2, and Stella, and additional DORIS tracking of SPOT 2. The resulting field, JGM 3, which has been adopted for the TOPEX/Poseidon altimeter data rerelease, yields improved orbit accuracies as demonstrated by better fits to withheld tracking data and substantially reduced geographically correlated orbit error. Methods for analyzing the performance of the gravity field using high‐precision tracking station positioning were applied. Geodetic results, including station coordinates and Earth orientation parameters, are significantly improved with the JGM 3 model. Sea surface topography solutions from TOPEX/Poseidon altimetry indicate that the ocean geoid has been improved. Subset solutions performed by withholding either the GPS data or the SLR/DORIS data were computed to demonstrate the effect of these particular data sets on the gravity model used for TOPEX/Poseidon orbit determination.
The GEM‐T2 potential coefficient model (incomplete to degree 50) has been combined, in a least squares sense, with 30 arc min mean anomalies, to obtain an adjusted set of coefficients and gravity anomalies. The adjusted anomalies were then harmonically analyzed to yield a set of potential coefficients to degree 360. The 30 arc min mean anomalies were estimated from terrestrial gravity data, from altimeter‐derived anomalies, and from 1°×1° terrestrial anomalies where such data were available. For areas devoid of gravity information, the anomalies were computed in two ways: (1) from the GEM‐T2 coefficients and (2) from the GEM‐T2 coefficients to degree 36 plus coefficients implied by a topographic/isostatic model. These “fill‐in” anomalies led to two potential coefficient models: OSU89A and OSU89B. The new models were checked in several ways including satellite orbit residual analysis, Geosat undulation comparisons, and Global Positioning System (GPS)/leveling undulation differences. The orbit fits (carried out by NASA) showed improvement over GEM‐T2. After correction for sea surface topography, orbit error, and permanent tidal effects, the geoid undulations from the OSU89B model have an RMS discrepancy with the Geosat‐implied undulation of ±59 cm over a complete 17‐day exact repeat cycle. The comparisons with GPS information indicate the accuracy of the computation of a relative undulation is of the order of 3–4 ppm of the distance between stations. The new models represent a substantial improvement over previous high‐degree expansions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.