It is demonstrated that the unique structures of carbon nanotubes and single-crystals of C 60 fullerenes may have applications to X-ray, neutron and high-energy particle physics, based on channeling, Bragg diffraction and coherent radiation. These are reviewed, pointing out the peculiarities and advantages of nanocrystals compared to ordinary crystals. New applications are explored: X-rays and neutron channeling, undulator radiation in periodically bent nanotubes, "channeled" transition radiation. Quantum and classical channeling, channeling in bent nanocrystals, Bragg scattering of X-rays and neutrons, chan neling radiation, coherent bremsstrahlung, parametric X-ray and nanotube undulator radiation are particularly studied using both analytical and Monte-Carlo methods. Continuous potentials, electron densities, transverse energy levels, and spectra of various types of coherent radiation are calcu-lated. Large dechanneling lengths of positive particles, bending efficiencies, reflecting coefficients of soft X-rays and PXR yields are predicted. Principles of particle detectors using photo-and secondary electron emissions are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.