We demonstrate the robust operation of a gallium arsenide tunable-barrier single-electron pump operating with 1 part-per-million accuracy at a temperature of 1.3 K and a pumping frequency of 500 MHz. The accuracy of current quantisation is investigated as a function of multiple control parameters, and robust plateaus are seen as a function of three control gate voltages and RF drive power. The electron capture is found to be in the decay-cascade, rather than the thermally-broadened regime. The observation of robust plateaus at an elevated temperature which does not require expensive refrigeration is an important step towards validating tunable-barrier pumps as practical current standards.PACS numbers: 1234 1 arXiv:1810.00100v1 [cond-mat.mes-hall]
We experimentally investigate the charge (isospin) frustration induced by a geometrical symmetry in a triangular triple quantum dot. We observe the ground-state charge configurations of sixfold degeneracy, the manifestation of the frustration. The frustration results in omnidirectional charge transport, and it is accompanied by nearby nontrivial triple degenerate states in the charge stability diagram. The findings agree with a capacitive interaction model. We also observe unusual transport by the frustration, which might be related to elastic cotunneling and the interference of trajectories through the dot. This work demonstrates a unique way of studying geometrical frustration in a controllable way.
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
A Si-based coupled double dot has been studied for its application to two-qubit gate. The authors manipulated electron number of each dot by using its adjacent side gate and finally observed a honeycomb charge-stability pattern, demonstrating interdot capacitive coupling. From the honeycomb diagram the capacitance-related interdot coupling parameters were extracted. Moreover, a fine structure in a conductance trace near the triple point of the honeycomb, where the tunnel coupling is maximized, was measured for finite bias, and its dependence on the interdot coupling was attributed to the spin exchange between the two dots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.