We report random laser action in a system where optical amplification is provided by colloidal quantum dots (CQDs). This system is obtained by depositing from solution CdSe/ZnS core-shell CQDs into rough micron-scale grooves fabricated on the surface of a glass substrate. The combination of CQD random packing and of disordered structures in the glass groove enables gain and multiple scattering. Upon optical excitation, random laser action is triggered in the system above a 25-mJ/cm2 threshold. Single-shot spectra were recorded to study the emission spectral characteristics and the results show the stability of the laser mode positions and the dominance of the modes close to the material gain maximum.
Mechanically flexible distributed feedback (DFB) lasers are fabricated by a low-cost approach using soft-lithography from a holographic master grating. The gain material is a star-shaped oligofluorene providing laser emission from 425 to 442 nm with a soft pump threshold at 14.4 μJ/cm (2.7 kW/cm). Encapsulation of the devices enables stable operation in ambient atmosphere at a 1/e degradation energy dosage of 53 J/cm.
Optical pumping conditions for organic solid-state lasers (OSLs) are discussed with particular emphasis on the use of gallium nitride based light-emitting diodes (LEDs) as pump sources. LEDs operate in a regime where the pump should be optimized for a short rise time and high peak intensity, whereas fall time and overall pulse duration are less important. Lasers pumped with this approach need to have very low thresholds which can now be routinely created using (onedimensional) distributed feedback lasers. In this particular case stripe-shaped excitation with linearly polarized light is beneficial. Arrays of micron-sized flip-chip LEDs have been arranged in an appropriate stripe shape and the array dimensions were chosen such that the divergence of LED emission does not cause a loss in peak intensity. These micro-LED arrays have successfully been used to pump OSLs with thresholds near 300 W/cm 2 (∼9 ns rise time, 35 ns pulse duration), paving the way for compact arrays of indirectly electrically pumped OSLs.
The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm2) when operated at a current density of 20 A/cm2
We report on the steady-state and optical modulation characteristics of a luminescence down-converting colloidal quantum dot/polyimide nanocomposite system suitable for integration with gallium nitride optoelectronics. The approach provides solution-processable and environmentally stable composite materials whose optical conversion and intrinsic modulation properties were evaluated at wavelengths from 535 to 624 nm. A nanocomposite for white-light generation upon excitation and mixing with 450-nm light was also obtained by blending colloidal quantum dots of different sizes in the same matrix. The forward external quantum efficiencies of the resulting nanocomposites were found to depend on the wavelength and can be as high as 33%. Optical modulation bandwidth above 25 MHz, which is an order of magnitude higher than for typical phosphor-based color-converters for GaN LEDs, and wavelength-converted data with an open-eye diagram at 25 Mb/s are demonstrated under external gallium nitride light-emitting diode excitation. These modulation characteristics are correlated with carrier lifetimes. This work provides guideline parameters and creates a possible path to integrated hybrid visible light sources for scientific and communications applicatio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.