We have developed a process for the fabrication of (001) oriented SrTiO3 buffer layers onto (001) MgO substrates by rf magnetron sputtering followed by a post-deposition heat treatment in air. Precursor films with Tl :Ba : Ca : Cu ratio 2 : 2 : 2 : 3 were deposited by dc magnetron sputtering onto both these buffered substrates and directly onto (001) SrTiO3 single-crystal substrates, and thalliated at elevated temperatures. Because of Sr diffusion from the substrate/buffer layer, and its subsequent substitution for Ba in the superconducting film, the single Tl–O layer phase Tl(Ba1−xSrx)2Ca2Cu3Oy was stabilized. Diffusion of Ba and Ca in the opposite direction led to the formation of a Ba–Ca–Ti–O compound at the interface. The Tl(Ba1xSrx)2Ca2Cu3Oy films typically have superconducting transition temperatures (Tc's) > 103 K and critical current densities (Jc's) > 2.9 × 105 A cm−2 at 77 K. Rs values measured on these films and scaled to 10 GHz were 3.0 mΩ at 80 K and <200 µΩ at 50 K for the film grown on SrTiO3 buffered MgO, and 2.0 mΩ and 1.0 mΩ at 50 K for the film grown directly onto the (001) SrTiO3 substrate. Films fabricated on (001) SrTiO3 using an in situ deposition technique with a substrate temperature around 100 °C lower than the ex situ thalliation temperature showed no evidence of an interfacial reaction layer.
Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.