Homoepitaxial single crystal diamond layers with bright photoluminescence (PL) of silicon-vacancy (SiV) color centers at 738 nm wavelength have been grown on (100) diamond substrates by a microwave plasma CVD using a controlled Si doping via adding silane to CH 4 -H 2 reaction gas mixture in the course of the deposition process. In the range of the silane concentrations SiH 4 /CH 4 explored, from 0 to 2.4%, the SiV PL intensity shows a nonmonotonic behavior with silane addition, with a maximum at 0.6%SiH 4 /CH 4 , and a rapid PL quenching at higher Si doping. The maximum SiV concentration of %450 ppb in the samples has been determined from optical absorption spectra. It is found that the SiV PL intensity can strongly, an order of magnitude, increase within non-epitaxial inclusions in single crystal diamond film.
Microcrystalline diamond films doped with silicon have been grown on aluminum nitride substrates by a microwave plasma CVD. The doping has been performed via adding silane in various concentrations to CH4-H2 reaction gas mixture in course of the deposition process. The films produced at the substrate temperatures of 750 to 950°C have been characterized by SEM, AFM, Raman and photoluminescence (PL) spectroscopy to assess the effect of Si doping on the diamond structure. The doped films showed bright photoluminescence of silicon-vacancy (SiV) color centers at 738 nm wavelength as well as noticeable side band at 723 nm. The optimum doping condition (SiH4/CH4 0.6%), that maximize the SiV PL emission, was determined for the range of silane concentrations SiH4/CH4 (0.0 -0.9%) explored. A further PL enhancement can be achieved by increase in the substrate temperature. The applied in situ doping from gas phase is shown to be an easy and effective method to incorporate Si in diamond in a controllable way.
Barite (Ba[SO4]) is one of the promising candidates for sequestration of radioactive waste. Barite can incorporate radium (Ra) and form ideal solid solutions, i.e., (Ba,Ra)[SO4]. Together with isostructural celestite (Sr[SO4]), ternary solid solutions, (Ba,Sr,Ra)[SO4], may exist in natural conditions. Our fundamental understanding of the dissolution kinetics of isostructural sulfates is critically important for a better risk assessment of nuclear waste repositories utilizing this mineral for sequestration. So far, the barite-water interface has been studied with experimental methods and atomistic computer simulations. The direct connection between the molecular scale details of the interface structure and experimental observations at the microscopic scale is not yet well understood. Here, we began to investigate this connection by using a kinetic Monte Carlo approach to simulate the barite dissolution process. We constructed a microkinetic model for the dissolution process and identified the reactive sites. Identification of these sites is important for an improved understanding of the dissolution, adsorption, and crystal growth mechanisms at the barite–water interface. We parameterized the molecular detachment rates by using the experimentally observed etch pit morphologies and atomic step velocities. Our parameterization attempts demonstrated that local lattice coordination is not sufficient to differentiate between the kinetically important sites and estimate their detachment rates. We suggest that the water structure and dynamics at identified sites should substantially influence the detachment rates. However, it will require more work to improve the parameterization of the model by means of Molecular Dynamics and ab initio calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.