International audienceSince the 1990s, drastic melting of sea ice and continental ice in the Arctic region, triggered by global warming, has caused substantial freshening of the Arctic Ocean. While several studies attempted to quantify the magnitude of this freshening, its consequences on primary producers remain poorly documented. In this study, we evaluate the impact of the freshwater content (FWC) of the upper Arctic Ocean on phytoplankton across the Pacific sector, from the Bering Strait (65°N) to the North Pole (86°N), during summer 2008. We performed statistical analyses on the physical, biogeochemical and biological data acquired during the CHINARE 2008 cruise to investigate the effect of sea-ice melting on the Arctic phytoplankton. We found that the strong freshening observed in the Canada Basin had a negative impact on primary producers as a result of the deepening of the nitracline and the establishment of a subsurface chlorophyll maximum (SCM). In contrast, regions with lower freshening, such as the Chukchi shelf and the marginal ice zone (MIZ) over the Chukchi Borderland, exhibited a shallower nitracline sustaining relatively high primary production and biomass. Our results imply that the predicted increase freshening in future years will likely cause the Arctic deep basin to become more oligotrophic because of weaker surface nutrient renewal from the subsurface ocean, despite higher light penetration
Diatoms of the Arctic Ocean annually experience extreme changes of light environment linked to photoperiodic cycles and seasonal variations of the snow and sea‐ice cover extent and thickness which attenuate light penetration in the water column. Arctic diatom communities exploit this complex seasonal dynamic through a well‐documented species succession during spring, beginning in sea‐ice and culminating in massive phytoplankton blooms underneath sea‐ice and in the marginal ice zone. The pattern of diatom taxa sequentially dominating this succession is relatively well conserved interannually, and taxonomic shifts seem to align with habitat transitions. To understand whether differential photoadaptation strategies among diatom taxa explain these recurring succession sequences, we coupled laboratory experiments with field work in Baffin Bay at 67.5°N. Based on field data, we selected five diatom species typical of different ecological niches and measured their growth rates under light intensity ranges representative of their natural habitats. To characterize their photoacclimative responses, we sampled pigments and total particulate carbon, and conducted 14C‐uptake photosynthesis response curves and variable fluorescence measurements. We documented a gradient in species respective light intensity for maximal growth suggesting divergent light response plasticity, which for the most part align with species sequential dominance. Other photophysiological parameters supported this ecophysiological framing, although contrasts were always clear only between succession endmembers, Nitzschia frigida and Chaetoceros neogracilis. To validate that these photoacclimative responses are representative of in situ dynamics, we compared them to the chlorophyll a‐specific light‐limited slope (α*) and saturated rate of photosynthesis (PM*), monitored in Baffin Bay on sea‐ice and planktonic communities. This complementary approach confirmed that unusual responses in α* and PM* as a function of light history intensity are similar between sentinel sympagic species N. frigida and natural ice‐core communities. While no light‐history‐dependent trends were observed in planktonic communities, their α* and PM* values were in the range of measurements from our monospecific cultures. Synthesis. Our results suggest that Arctic diatoms species photoadaptation strategy is tuned to the light environment of the habitats in which they dominate and indeed drives the seasonal taxonomic succession.
In the wake of modest surface blooms that occur at the onset of the growth season in the nitrogen-poor surface waters of the Beaufort Sea, subsurface chlorophyll maxima (SCM) develop and persist within the nutrient-rich halocline. Algal communities of these SCM can realize a major portion of annual net primary production and are often dominated by the widespread diatom Chaetoceros gelidus in coastal waters. In order to assess how changing growth conditions at the SCM may affect the biological carbon pump, grazer nutrition, and dissolved nutrient inventories across the transpolar Pacific-Atlantic conduit, the elemental stoichiometry of a C. gelidus strain (RCC2046) isolated from the Beaufort Sea and its response to the availability of light and different forms of nitrogen (N) were examined in the laboratory. The cells were grown in semi-continuous batch cultures at 0 • C under sub-saturating (LL; 5.5 µmol photons m −2 s −1 ) or saturating irradiance (HL; 200 µmol photons m −2 s −1 ) and with ammonium (NH + 4 ), nitrate (NO − 3 ) or urea as sole N form in nutrient-replete conditions. The growth rate, cell size, maximum quantum efficiency of photosystem II (F v /F m ) and the concentrations of chlorophyll a (Chl a), biogenic silica (Si) and particulate N, phosphorus (P), and organic carbon (C) were measured during the exponential growth phase. Despite a clear response of volumetric quotas to N form, the growth rates and elemental ratios of the cells were unaffected by N form in the two irradiance treatments. Elemental ratios were affected by light and the responses were remarkably similar to those observed for temperate diatoms. Overall, this study shows that the growth and elemental composition of C. gelidus in the Arctic Ocean are highly resistant to changes in nitrogen form at near-freezing temperatures and suggests that this diatom possesses the ability to remain competitive despite ongoing environmental changes.
Author Contribution Statement: N.S. designed the experiments, grew the cultures and conducted the analyses. N.S. and J.-E.T. wrote the manuscript with feedback from M.B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.