Anomalous impurity redistribution after a laser irradiation process in group-IV elements has been reported in numerous papers. In this Letter, we correlate this still unexplained behavior with the peculiar bonding character of the liquid state of group-IV semiconductors. Analyzing the B-Si system in a wide range of experimental conditions we demonstrate that this phenomenon derives from the non-Fickian diffusion transport of B in l-Si. The proposed diffusion model relies on the balance between two impurity states in different bonding configurations: one migrating at higher diffusivity than the other. This microscopic mechanism explains the anomalous B segregation, whereas accurate comparisons between experimental chemical profiles and simulation results validate the model.
The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C2 versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, we show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.
In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.
In this work, we present a model describing the boron redistribution during laser thermal annealing in the melting regime based on the adsorption of boron atoms at the solid-liquid interface. To validate the model, we performed SIMS measurements on silicon samples implanted with boron with an energy of 3 keV and doses of 3×1013 cm-2 and 4×1014 cm-2 annealed with a XeCl excimer laser with a wavelength of 308 nm, a pulse duration of 160 ns, and up to 10 consecutive pulses. After calibration, our model is able to reproduce the measured profiles for the different process conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.